Damping mechanisms and shock-like transitions in the human arterial tree

  • Peter F. Niederer
Original Papers

Abstract

The unidirectional nature of blood flow in mammalian arteries encourages the modelling of propagating pressure and flow pulses in the arterial tree by means of a one-dimensional mathematical approximation. It has been shown that this approximation yields realistic results in the proximal as well as in the distal regions of a simulated arterial conduit, providing that the damping induced by the viscoelasticity of the vessel walls as well as by the viscosity of the blood are properly taken into account. Often, models were formulated on the basis of an elastic formulation of the arterial wall properties and of an approximation for the damping due to blood viscosity which is derived from parabolic velocity profiles (“Poiseuille model”). Yet, such models are known to produce shock-like transitions in the propagating pulses which are not observed in man under physiological conditions.

The viscoelastic damping characteristics of the vessel walls are such that they reduce the tendency of shock formation in the model. This can be shown with the aid of a wave front expansion, from which criteria for the steepening of wave fronts are derived. The application of the results to the human arterial system shows that shock-like waves are not to be expected under normal conditions. However, in case of a pathologically increased pressure rise at the root of the aorta, shock-like transitions may still develop in the periphery. Such circumstances can occur, e. g., in cases of severe aortic valve insufficiency (without aortic stenosis).

Furthermore, the damping characteristics associated with blood viscosity are shown to impede mathematical shock formation in the strict sense a priori. Steepening of a wave front according to the criteria mentioned above still may occur, however, with increasing steepening this process is gradually counterbalanced by the dissipative mechanism induced by viscous friction.

Finally, the relative influence of the damping due to wall viscoelasticity and blood viscosity is discussed as a function of the relevant parameters describing the geometry and pulsatility of the typical blood flow conditions.

Keywords

Blood Viscosity Shock Formation Parabolic Velocity Profile Arterial Conduit Blood Flow Condition 

Zusammenfassung

Die vorwiegend axialen Strömungsverhältnisse in den menschlichen Arterien rechtfertigen es, die Ausbreitung der Fluß- und Druckpulse im arteriellen System auf der Basis eines eindimensionalen mathematischen Strömungsmodelles zu analysieren. Es konnte in früheren Arbeiten gezeigt werden, daß eine solche Näherung realistische Resultate sowohl im proximalen als auch im distalen Abschnitt eines simulierten Arterienastes liefert, falls die Dämpfung aufgrund des viskoelastischen Verhaltens der Blutgefäßwände sowie der Viskosität des Blutes in geeigneter Weise mitberücksichtigt werden. Häufig wurde in bisherigen Modellen eine elastische Formulierung der Gefäßwandeigenschaften verwendet und eine Näherung für den Einfluß der Blutviskosität eingesetzt, welche aus der Annahme parabolischer Geschwindigkeitsprofile folgt (“Poiseuille-Näherung”). Es ist aber bekannt, daß solche Modelle im Verlauf der Ausbreitung eines Pulses stoßartige Wellenfronten ergeben, welche im Menschen unter natürlichen Bedingungen nicht beobachtet werden.

Die viskoelastischen Dämpfungseigenschaften der Gefäßwände vermindern die Tendenz des Modelles, Stoßwellen zu bilden. Dies wird mit Hilfe einer Wellenfrontentwicklung gezeigt, aufgrund welcher Kriterien für das Aufsteilen einer Welle hergeleitet werden. Die Anwendung der Resultate auf das menschliche arterielle System zeigt, daß stoßartige Wellen unter normalen physiologischen Bedingungen nicht zu erwarten sind. Im Falle einer pathologisch erhöhten Druckanstiegsgeschwindigkeit an der Wurzel der Aorta jedoch können stoßartige Übergänge auftreten. Solche Bedingungen ergeben sich beispielsweise bei schweren Aortenklappeninsuffizienzen (ohne gleichzeitige Stenose). Weiterhin wird gezeigt, daß die Dämpfung aufgrund der Blutviskosität Stoßwellenbildung im mathematischen Sinne überhaupt verhindert. Aufsteilen einer Wellenfront im Sinne der erwähnten Kriterien kann zwar auftreten; dieser Prozeß wird jedoch durch die visköse Dissipation allmählich aufgehoben.

Schließlich wird der relative Einfluß der Dämpfung aufgrund der Wandviskoelastizität und der Blutviskosität in Funktion der relevanten Parameter diskutiert, welche die Geometrie und Pulsatilität typischer Blutströmungen bestimmen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Anliker, R. L. Rockwell and E. Ogden,Nonlinear analysis of flow pulses and shock waves in arteries. Part I: Derivation and properties of mathematical model. Part II: Parametric study related to clinical problems. J. Appl. Math. Phys. (ZAMP).22, 217–246 (Part I), 563–581 (Part II) (1971).Google Scholar
  2. F. T. Brown,A quasi-method of characteristics with application to fluid lines with frequency dependent wall shear and heat transfer. ASME J. Basic Eng.91, 217–227 (1969).Google Scholar
  3. M. Casty and D. Giddens,25+1 Channel pulsed ultrasound velocity meter for quantitative flow measurements and turbulence analysis. Ultrasound in Med. & Biol.2, 161–171 (1984).Google Scholar
  4. R. Courant and D. Hilbert,Methods of mathematical physics. Interscience, New York 1953.Google Scholar
  5. L. K. Forbes,A note on the solution of the one-dimensional unsteady equations of arterial blood flow by the method of characteristics. J. Austral. Math. Soc. B21, 45–52 (1979).Google Scholar
  6. L. K. Forbes,On the evolution of shock-waves in mathematical models of the aorta. J. Austral. Math. Soc. B22, 257–269 (1981).Google Scholar
  7. Y. C. Fung,Stress-strain-history relations of soft tissues in simple elongation. In: Biomechanics, its foundations and objectives. Y. C. Fung, N. Perrone, M. Anliker (eds.), Prentice-Hall, Englewood Cliffs 1972.Google Scholar
  8. J. H. Gerrard and L. A. Taylor,Mathematical model representing blood flow in arteries. Med. Biol. Eng. Comp.15, 611 (1977).Google Scholar
  9. A. C. Guyton,Medical Physiology, Saunders 1976.Google Scholar
  10. R. Holenstein, P. Niederer and M. Anliker,A viscoelastic model for use in predicting arterial pulse waves. ASME J. Biomech. Eng.102, 318–319 (1980).Google Scholar
  11. R. Holenstein, R. M. Nerem and P. Niederer,On the propagation of a wave front in viscoelastic arteries. ASME J. Biomech. Eng.106, 115–122 (1984).Google Scholar
  12. H. W. Hoogstraten and C. H. Smit,A mathematical theory of shock-wave formation in arterial blood flow. Acta Mech.30, 145 (1978).Google Scholar
  13. E. Jones, M. Anliker and I. Chang,Effects of viscosity and constraints on the dispersion and dissipation of waves in large blood vessels. Biophys. J.11, 1085 (1971).Google Scholar
  14. H. Keller, W. Meier, M. Anliker and D. Kumpe,Noninvasive measurements of velocity profiles and blood flow in the common carotid artery by pulsed Doppler ultrasound. Stroke7, 370 (1976).Google Scholar
  15. S. C. Ling, H. B. Atabek, Nonlinear analysis of pulsatile flow in arteries. J. Fluid Mech.55, 493 (1972).Google Scholar
  16. R. J. Liou, M. E. Clark, S. M. Robertson and L. C. Cheng,The dynamics of unsteady bifurcation flow. In: Biofluid Mech. (D. Schneck ed.) Plenum Press, New York 1980.Google Scholar
  17. F. Mainardi and H. Buggisch,On nonlinear waves in liquid-filled elastic tubes. IUTAM Symp. Tallinn 1982, Springer, Berlin 1983.Google Scholar
  18. P. K. Paulsen and J. M. Hasenkam,Three-dimensional visualization of velocity profiles in the ascending aorta in dogs, measured with a hot-film anemometer. J. Biomech.16, 201 (1983).Google Scholar
  19. T. J. Pedley,The fluid mechanics of large blood vessels. Cambridge Univ. Press 1980.Google Scholar
  20. J. Raines, M. Jaffrin and A. H. Shapiro,A computer simulation of arterial dynamics in the human leg. J. Biomech.7, 77 (1974).Google Scholar
  21. G. Rudinger,Shock waves in mathematical models of the aorta. J. Appl. Mech.37, 34 (1970).Google Scholar
  22. B. W. Schaaf and P. H. Abbrecht,Digital computer simulation of human systemic arterial pulse wave transmission: A nonlinear model. J. Biomech.5, 345 (1972).Google Scholar
  23. B. R. Seymour and E. Varley,High-frequency, pulsatile flow in a tapering, viscoelastic tube of varying stiffness. In Haemorheology, Copley (ed.) (1966).Google Scholar
  24. J. C. Stettler, P. Niederer and M. Anliker,Theoretical analysis of arterial haemodynamics including the influence of bifurcations. Ann. Biomed. Eng.9, 145 (Part I), 165 (Part II) (1981).Google Scholar
  25. V. L. Streeter, W. F. Keitzer and D. F. Bohr,Pulsatile pressure and flow through distensible vessels. Circ. Res.13, 3–20 (1963).Google Scholar
  26. S. Uchida,The pulsating viscous flow superimposed on the steady laminar motion of incompressible fluid in a circular pipe. J. Appl. Math. Phys. (ZAMP)7, 403–422 (1956).Google Scholar
  27. G. B. Whitham,Linear and nonlinear waves. Interscience, New York 1974.Google Scholar
  28. K. Witzig,Über die Wellenbewegung zäher Flüssigkeiten in elastischen Röhren. Dissertation. University of Berne 1914.Google Scholar
  29. J. R. Womersley,An elastic tube theory of pulse transmission an oscillatory flow in mammalian arteries. WADC Tech. Rep. TR 56-614 (1957).Google Scholar
  30. W. Zielke,Frequency-dependent friction in transient pipe flow. ASME J. Basic Eng.90, Series D, No. 1, 109 (1968).Google Scholar

Copyright information

© Birkhäuser-Verlag 1985

Authors and Affiliations

  • Peter F. Niederer
    • 1
  1. 1.Institute of Biomedical EngineeringSwiss Federal Institute of Technology and University of ZurichZurich

Personalised recommendations