Skip to main content
Log in

On self-preserving, variable-density, turbulent free jets

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

Appropriately defined Gaussian error-functions are shown to represent closed-form solutions of self-preserving, axisymmetric, variable density, free turbulent jets. The turbulent diffusivities of momentum, mass or heat associated with such solutions are found to vary both in the streamwise and radial directions, and are different from each other. An entrainment function for the jet can also be derived from the present analysis. The entrainment coefficient is found to be uniquely related to the turbulent Reynolds number, Re t , of the jet, which is one of the two parameters in the closed-form solutions. Inverse centreline values of velocity, density, mass fraction and temperature are found to be linearly proportional to the streamwise coordinate as are the spread of velocity and scalar. If the two parameters are determined from jet spread data, the resulting closed-form solutions are in good agreement with measurements.

Zusammenfassung

Es wird gezeigt, daß geeignet definierte Gauss'sche Fehlerfunktionen für ähnliche achssymmetrische Freistrahlen Lösungen in geschlossener Form darstellen. Die mit solchen Lösungen verbundenen Impuls-, Stoff- und Energieaustauschgrößen verändern sich sowohl in Strömungs- als auch in Radialrichtung und sind voneinander verschieden. Auch eine „Entrainmentfunktion” des Freistrahls ist ableitbar von der vorliegenden Analyse. Es wird gezeigt, daß der „Entrainment-koeffizient“ des Freistrahls einzig von der turbulenten Reynolds-Zahl Re t , einem der zwei Parameter der Lösung, abhängig ist. Die Inversen der Geschwindigkeits-, Dichte-, Massenverhältnis- und Temperaturwerte auf der Strahlachse steigen in Strömungsrichtung linear an. Wenn die zwei Parameter aus den Versuchswerten der Strahlausbreitung ermittelt werden, ergibt die resultierende analytische Lösung eine gute Übereinstimmung mit den Messungen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Libby,Theoretical analysis of turbulent mixing of reactive gases with application to supersonic combustion of hydrogen. ARS J.32, 388–396 (1962).

    Google Scholar 

  2. A. Ferri, P. A. Libby and V. Zakkay,Theoretical and experimental investigation of supersonic combustion. Third Congress, International Council of the Aeronautical Sciences, Spartan Books, Baltimore, MD, 1089–1155 (1964).

    Google Scholar 

  3. J. O. Hinze,Turbulence. McGraw-Hill Book Co, New York/London 1959.

    Google Scholar 

  4. J. A. Schetz,Injection and mixing in turbulent flow. Progress in Astron. and Aero.68, published by AIAA (1980).

  5. S. Corrsin and M. S. Uberoi,Spectra and diffusion in a round turbulent jet. N.A.C.A. Rept. No. 1040 (1951).

  6. S. Corrsin and A. L. Kistler,The free-stream boundaries of turbulent flow. N.A.C.A. TN-3133 (1954).

  7. I. Wygnanski and H. Fiedler,Some measurements in the self-preserving jet. J. Fluid Mech.38, 577–612 (1969).

    Google Scholar 

  8. R. Chevray and N. K. Tutu,Intermittency and preferential transport of heat in a round jet. J. Fluid Mech.88, 133–160 (1978).

    Google Scholar 

  9. P. D. Sunavala, C. Hulse and M. W. Thring,Mixing and combustion in free and enclosed turbulent jet diffusion flames. Comb. Flame1, 179–193 (1957).

    Google Scholar 

  10. R. A. M. Wilson and P. V. Danckwerts, Studies in turbulent mixing — II a hot-air jet. Chem. Eng. Sci.19, 885–895 (1964).

    Google Scholar 

  11. P. H. Heck,Jet plume characteristics of 72-tube and 72-hole primary suppressor nozzles. T. M. No. 69-457 (FAA Contract FA-55-67-7), Flight Propulsion Div., General Electric Co. (1969).

  12. L. Maestrello and E. McDaid,Acoustic characteristics of a high-subsonic jet. AIAA J. 9, 1058–1066 (1971).

    Google Scholar 

  13. H. A. Becker, H. C. Hottel and G. C. Williams,The nozzle-fluid concentration field of the round, turbulent, free jet. J. Fluid Mech.30, 285–303 (1967).

    Google Scholar 

  14. W. R. Keagy and A. E. Weller,A study of freely expanding inhomogeneous jets. Heat Transfer Fluid Mech. Inst., 89–98, published by Stanford University 1949.

  15. A. D. Birch, D. R. Brown, G. M. Dodson and J. R. Thomas,The turbulent concentration field of a methane jet. J. Fluid Mech.88, 431–449 (1978).

    Google Scholar 

  16. P. M. Sforza and R. F. Mons,Mass momentum, and energy transport in turbulent free jets. Int. J. Heat Mass Transfer21, 371–384 (1978).

    Google Scholar 

  17. G. N. Abramovich, O. V. Yakovlevska, I. P. Smirnova, A. N. Secundov and S. Yu. Krashininnikov,An investigation of the turbulent jets of different gases in a general stream. Astron. Acta.14, 229–240 (1969).

    Google Scholar 

  18. R. M. C. So, S. A. Ahmed and M. H. Yu,The near field behavior of turbulent gas jets in a long confinement. Exps. in Fluids4 (1986).

  19. W. Tollmien,Berechnung turbulenter Ausbreitungsvorgänge. ZAMM6, 468–478 (1926) (also NACA TM 1085, 1945).

    Google Scholar 

  20. R. M. C. So and B. C. Hwang,On similarity solutions for turbulent and heated round jets. ZAMP37, 624–631 (1986).

    Google Scholar 

  21. G. L. Brown and A. Roshko,On density effects and large structures in turbulent mixing layers. J. Fluid Mech.64, 775–816 (1974).

    Google Scholar 

  22. H. Reichardt, Über eine neue Theorie der freien Turbulenz. ZAMM21, 257 (1941).

    Google Scholar 

  23. B. R. Morton, G. I. Taylor and J. S. Turner,Turbulent gravitational convection from maintained and instantaneous sources. Proc. Roy. Soc. Series A,234, 1–22 (1956).

    Google Scholar 

  24. J. I. Masters,Some applications in physics of the P-function. J. Chem. Phys.23, 1865–1874 (1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

So, R.M.C., Liu, T.M. On self-preserving, variable-density, turbulent free jets. Z. angew. Math. Phys. 37, 538–558 (1986). https://doi.org/10.1007/BF00945429

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00945429

Keywords

Navigation