pure and applied geophysics

, Volume 149, Issue 1, pp 173–217 | Cite as

Long-term earthquake prediction in the circum-pacific convergent belt

  • B. C. Papazachos
  • E. E. Papadimitriou
  • G. F. Karakaisis
  • D. G. Panagiotopoulos


Investigation of the time-dependent seismicity in 274 seismogenic regions of the entire continental fracture system indicates that strong shallow earthquakes in each region exhibit short as well as intermediate term time clustering (duration extending to several years) which follow a power-law time distribution. Mainshocks, however (interevent times of the order of decades), show a quasiperiodic behaviour and follow the ‘regional time and magnitude predictable seismicity model’. This model is expressed by the following formulas
$$\begin{gathered} \log T_t = 0.19 M_{\min } + 0.33 M_p - 0.39 \log m_0 + q \hfill \\ M_f = 0.73 M_{\min } - 0.28 M_p + 0.40 \log m_0 + m \hfill \\ \end{gathered} $$
which relate the interevent time,T t (in years), and the surface wave magnitude,M f , of the following mainshock: with the magnitude,Mmin, of the smallest mainshock considered, the magnitude,M p , of the preceded mainshock and the moment rate,m0 (in−1), in a seismogenic region. The values of the parametersq andm vary from area to area. The basic properties of this model are described and problems related to its physical significance are discussed.

The first of these relations, in combination with the hypothesis that the ratioT/T t , whereT is the observed interevent time, follows a lognormal distribution, has been used to calculate the probability for the occurrence of the next very large mainshock (M s ≥7.0) during the decade 1993–2002 in each of the 141 seismogenic regions in which the circum-Pacific convergent belt has been separated. The second of these relations has been used to estimate the magnitude of the expected mainshock in each of the regions.

Key words

Time-dependent seismicity seismogenic region circum-Pacific convergent belt 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, K. (1981),Magnitudes of Large Earthquakes from 1904 to 1980, Phys. Earth Planet. Interiors27, 72–93.Google Scholar
  2. Abe, K. (1984),Complements to “Magnitudes of Large Shallow Earthquakes from 1904 to 1980”, Phys. Earth Planet. Interiors34, 17–23.Google Scholar
  3. Abe, K., andNoguchi, S. (1983),Revision of Magnitudes of Large Shallow Earthquakes, 1897–1912. Phys. Earth Planet. Interiors33, 1–11.Google Scholar
  4. Ambraseys, N. N., andMelville, C. P.,A History of Persian Earthquakes (Cambridge University Press, Cambridge 1982) 219 pp.Google Scholar
  5. Anagnos, T., andKiremidjan, A. (1984),Stochastic Time-predictable Model for Earthquake Occurrence, Bull. Seismol. Soc. Am.74, 2593–2611.Google Scholar
  6. Astiz, L., andKanamori, H. (1984),An Earthquake Doublet in Ometepec, Guerrero, Mexico, Phys. Earth Planet. Interiors34, 24–45.Google Scholar
  7. Bender, B. (1984),A Two-state Poisson Model for Seismic Hazard Estimation, Bull. Seismol. Soc. Am.74, 1463–1468.Google Scholar
  8. Bufe, C. G., Harsch, P. W., andBurford, R. O. (1977),Steady-state Seismic Slip: A Precise Recurrence Model, Geophys. Res. Lett.4, 91–94.Google Scholar
  9. Cornell, C. A., Wu, S., Winterstein, S. T., Dieterich, J. H., andSimpson, R. W. (1993),Seismic Hazard Induced by Mechanically Interactive Fault Segments, Bull. Seismol. Soc. Am.83, 436–449.Google Scholar
  10. Davis, P. M., Jackson, D. D., andKagan, Y. Y. (1989),The Longer it Has Been Since the Last Earthquake, the Longer the Expected Time Till the Next? Bull. Seismol. Soc. Am.79, 1439–1456.Google Scholar
  11. Draper, N. R., andSmith, J. Applied Regression Analysis (Wiley Publ., New York 1966), 407 pp.Google Scholar
  12. Ekström, G., andDziewonski, A. (1988),Evidence of Bias in Estimations of Earthquake Size, Nature332, 319–323.Google Scholar
  13. Fedotov, S. A. (1965),Regularities of the Distribution of Strong Earthquakes in Kamchatka, the Kurile Islands and Northeastern Japan (in Russian), Tr. Inst. Fiz. Zemli, Akad. Nauk SSSR36, 66–93.Google Scholar
  14. Gutenberg, B., andRichter, C. F. (1944),Frequency of Earthquakes in California, Bull. Seismol. Soc. Am.34, 185–188.Google Scholar
  15. Kagan, Y. Y., andJackson, D. D. (1991a),Long-term Earthquake Clustering, Geophys. J. Int.104, 117–133.Google Scholar
  16. Kagan, Y. Y., andJackson, D. D. (1991b),Seismic Gap Hypothesis: Ten Years After, J. Geophys. Res.96, 21419–21431.Google Scholar
  17. Kanamori, H. (1977),The Energy Released in Great Earthquakes, J. Geophys. Res.82, 2981–2987.Google Scholar
  18. Karakaisis, G. F. (1993a),Long-term Earthquake Prediction in the New Guinea—Bismarck Sea Region Based on the Time and Magnitude Predictable Model, J. Phys. Earth41, 365–389.Google Scholar
  19. Karakaisis, G. F. (1993b),A Microseismicity Precursor before the December 21, 1990 Earthquake (M s =5.9, Northern Greece), Proc. 2nd Congr. Hellenic Geophys. Union, Florina, May 5–7, 1993, 157–163.Google Scholar
  20. Karakaisis, G. F. (1994a),Long-term Earthquake Prediction along the North and East Anatolian Fault Zones Based on the Time and Magnitude Predictable Model, Geophys. J. Int.116, 198–204.Google Scholar
  21. Karakaisis, G. F. (1994b),Long-term Earthquake Prediction in Iran Based on the Time and Magnitude Predictable Model, Phys. Earth Planet. Inter.83, 129–145.Google Scholar
  22. Karakaisis, G. F., Kourouzidis, M. C., andPapazachos, B. C. (1991),Behaviour of Seismic Activity during a Single Seismic Cycle, Proc. Intern. Conf. Earthquake Prediction: State-of-the-art, Strasbourg, 15–18 October 1991, France, 47–54.Google Scholar
  23. Kelleher, J., Sykes, L., andOliver, J. (1973),Possible Criteria for Predicting Earthquake Locations and their Application to Major Plate Boundaries of the Pacific and Caribbean, J. Geophys. Res.78, 2547–2585.Google Scholar
  24. Langston, C. A. (1991),A Fundamental Earthquake Problem, Bull. Seismol. Soc. Am.81, 2516–2519.Google Scholar
  25. McCann, W. R., Nishenko, S. P., Sykes, L. R., andKrause, J. (1979),Seismic Gaps and Plate Tectonics: Seismic Potential for Major Boundaries, Pure and Appl. Geophys.117, 1082–1147.Google Scholar
  26. McGuire, R. K. (1979),Adequacy of Simple Probability Models for Calculating Felt-shaking Hazard, Using the Chinese Earthquake Catalogue, Bull. Seismol. Soc. Am.69, 877–892.Google Scholar
  27. McGuire, R. K., andBarnhard, J. (1981),Effects of Temporal Variations in Seismicity on Seismic Hazards, Bull. Seismol. Soc. Am.71, 321–334.Google Scholar
  28. Molnar, P. (1979),Earthquake Recurrence Intervals and Plate Tectonics, Bull. Seismol. Soc. Am.69, 115–133.Google Scholar
  29. Mogi, K. (1967),Regional Variations in Magnitude-frequency Relation of Earthquakes, Bull. Earthq. Res. Inst.45, 313–325.Google Scholar
  30. Mogi, K. (1968),Development of Aftershock Areas of Great Earthquakes, Bull. Earthq. Res. Inst.46, 175–203.Google Scholar
  31. Mogi, K. (1981),Seismicity in western Japan and long-term earthquake forecasting. InEarthquake Prediction, An International Review (eds. Simpson, D. W., and Richards, P. G.) (Maurice Ewing Series, Am. Geophys. Union 1981) 4, pp. 43–42.Google Scholar
  32. Mogi, K. Earthquake Prediction (Academic Press 1985) 355 pp.Google Scholar
  33. Nishenko, S. P. (1991),Circum-Pacific Seismic Potential: 1989–1999, Pure and Appl. Geophys.135, 169–259.Google Scholar
  34. Nishenko, S. P., andBuland, R. (1987),A Generic Recurrence Interval Distribution for Earthquake Forecasting, Bull. Seismol. Soc. Am.77, 1382–1399.Google Scholar
  35. Nishenko, S. P., andSykes, L. R. (1993),Comment on “Seismic Gap Hypothesis: Ten Years After”by Y. Y. Kagan and D. D. Jackson, J. Geophys. Res.98, 9909–9916.Google Scholar
  36. Pacheco, J. F., andSykes, L. R. (1992),Seismic Moment Catalog of Large Shallow Earthquakes, 1900 to 1989, Bull. Seismol. Soc. Am.82, 1306–1349.Google Scholar
  37. Panagiotopoulos, D. G. (1993),Long-term Earthquake Prediction in the Philippines Region Based on the Time and Magnitude Predictable Model, Proc. 2nd Congr. Hellenic Geophys. Union, Florina, May 5–7, 1993, 472–481.Google Scholar
  38. Panagiotopoulos, D. G. (1995a),Long-term Earthquake Prediction along the Seismic Zone of Solomon Islands and New Hebrides Based on the Time and Magnitude Predictable Model, Natural Hazards (in press).Google Scholar
  39. Panagiotopoulos, D. G. (1995b),Long-term Earthquake Prediction in Central America and Caribbean Sea Based on the Time and Magnitude Predictable Model, Bull. Seismol. Soc. Am. (in press).Google Scholar
  40. Papadimitriou, E. E. (1993),Long-term Earthquake Prediction along the Western Coast of South and Central America Based on a Time Predictable Model, Pure and Appl. Geophys.140, 301–316.Google Scholar
  41. Papadimitriou, E. E. (1994a),Long-term Prediction in North Pacific Seismic Zone Based on the Time and Magnitude Predictable Model, Natural Hazards9, 303–321.Google Scholar
  42. Papadimitriou, E. E. (1994b),Long-term Prediction of Large Shallow Mainshocks along the Tonga—Kermadec—New Zealand Seismic Zone Based on a Time and Magnitude Predictable Model, Tectonophysics235, 347–360.Google Scholar
  43. Papadimitriou, E. E., andPapazachos, B. C. (1994),Time-dependent Seismicity in the Indonesian Region, J. Geophys. Res.99, 15387–15398.Google Scholar
  44. Papazachos, B. C. (1989),A Time-predictable Model for Earthquakes in Greece, Bull. Seismol. Soc. Am.79, 77–84.Google Scholar
  45. Papazachos, B. C. (1992),A Time and Magnitude Predictable Model for Generation of Shallow Earthquakes in the Aegean Area, Pure and Appl. Geophys.138, 287–308.Google Scholar
  46. Papazachos, B. C. (1993),Long-term Prediction of Intermediate Depth Earthquakes in Southern Aegean Region Based on a Time-predictable Model, Natural Hazards7, 211–218.Google Scholar
  47. Papazachos, B. C., andPapaioannou, Ch. A. (1993),Long-term Earthquake Prediction in the Aegean Area Based on a Time and Magnitude Predictable Model, Pure and Appl. Geophys.140, 593–612.Google Scholar
  48. Papazachos, B. C., Papadimitriou, E. E., Karakaisis, G. F., andTsapanos, T. M. (1994a),An Application of the Time and Magnitude Predictable Model for the Long-term Prediction of Strong Shallow Earthquakes in the Japan Area, Bull. Seismol. Soc. Am.84, 426–437.Google Scholar
  49. Papazachos, B. C., Papadimitriou, E. E., andKarakaisis, G. F. (1994b),Time-dependent Seismicity in the Zones of the Continental Fracture System, Proc. of the XXIV Gen. Ass. of ESC, Athens, 1994, p. 11.Google Scholar
  50. Rikitake, T. (1976),Recurrence of Great Earthquakes at Subduction Zones, Tectonophysics35, 335–362.Google Scholar
  51. Scholz, C. H. (1988),Mechanism of Seismic Sequences, Pure and Appl. Geophys.126, 701–718.Google Scholar
  52. Scholz, C. H.,The Mechanics of Earthquakes and Faulting (Cambridge Univ. Press 1990) 349 pp.Google Scholar
  53. Shimazaki, K., andNakata, T. (1980),Time-predictable Recurrence Model for Large Earthquakes, Geophys. Res. Lett.7, 279–282.Google Scholar
  54. Suzuki, S., andKiremidjan, A. S. (1919),A Random Slip Rate Model for Earthquake Occurrences with Bayesian Parameters, Bull. Seismol. Soc. Am.81, 781–795.Google Scholar
  55. Sykes, L. R. (1971),Aftershock Zones of Great Earthquakes, Seismicity Gaps, Earthquake Prediction for Alaska and the Aleutians, J. Geophys. Res.76, 8021–8041.Google Scholar
  56. Sykes, L. R.,Predicting great earthquakes. InEarthquakes: Observation, Theory and Interpretation (eds. Kanamori, H., and Boschi, E.) (Elsevier North-Holland, Inc. 1983) pp. 398–435.Google Scholar
  57. Sykes, L. R., andQuittmeyer, R. C.,Repeat times of great earthquakes along simple plate boundaries. InEarthquake Prediction, An International Review (eds. Simpson, D. W., and Richards, P. G.) (Maurice Ewing Series, Am. Geophys. Union 1981) vol. 4, 217–247.Google Scholar
  58. Tsapanos, T. M., Scordilis, E. M., andPapazachos, B. C. (1990),A Global Catalogue of Strong Earthquakes, Publ. Geophys. Lab. Univ. Thessal., 90 pp.Google Scholar
  59. Tse, S. T., andRice, J. R. (1986),Crustal Earthquake Instability in Relation to the Depth Variation of Frictional Slip Properties, J. Geophys. Res.91, 9452–9472.Google Scholar
  60. Utsu, T. (1971),Aftershocks and Earthquake Statistics, J. Facul. Science, Hokkaido Univ.3, 379–441.Google Scholar
  61. Weisberg, S.,Applied Linear Regression (Wiley, New York 1980) 283 pp.Google Scholar
  62. Wesnousky, S. G., Scholz, C. H., Shimazaki, K., andMatsuda, T. (1984),Integration of Geological and Seismological Data for Analysis of Seismic Hazard: A Case Study of Japan, Bull. Seismol. Soc. Am.74, 687–708.Google Scholar
  63. Zengh, X., andVere-Jones, D. (1991),Application of Stress Release Models to Historical Earthquakes from North China, Pure and Appl. Geophys.135, 559–576.Google Scholar

Copyright information

© Birkhäuser Verlag 1997

Authors and Affiliations

  • B. C. Papazachos
    • 1
  • E. E. Papadimitriou
    • 1
  • G. F. Karakaisis
    • 1
  • D. G. Panagiotopoulos
    • 1
  1. 1.Laboratory of GeophysicsUniversity of ThessalonikiThessalonikiGreece

Personalised recommendations