Advertisement

Boundary effects on granular shear flows of smooth disks

  • M. W. Richman
  • C. S. Chou
Original Papers

Summary

We obtain boundary conditions for two-dimensional flows of identical, nearly elastic, circular disks that interact with a flat wall to which identical, evenly spaced half-disks have been attached. Expressions for the transfer of momentum and energy from the boundary to the flow are obtained by statistical averaging over all possible wall-flow disk collisions. We improve upon the expressions derived by Jenkins and Richman [1986] by employing in the averaging process a more elaborate velocity distribution function obtained through the method of moments. In addition we expand the distribution function about a point near the flat wall that guarantees positive slip velocities. With these boundary conditions, we analyze a two-dimensional shear flow driven by parallel bumpy boundaries. The constitutive theory employed includes both the effects of particle collisions and particle transport on the transfer of momentum and energy throughout the flow. We demonstrate how the resulting profiles of velocity, granular temperature, and solid fraction are affected by changes in the geometry of the boundary. We also predict how the induced stresses vary with the geometry of the boundary and the average solid fraction within the flow.

Keywords

Solid Fraction Constitutive Theory Velocity Distribution Function Granular Temperature Flat Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Wir erhalten die Randbedingungen für die zweidimensionale Strömung identischer, beinahe elastischer, runder Scheiben, die sich in Wechselwirkung mit einer geraden Wand befinden, an der in gleichmäßigen Abständen Halbscheiben angebracht sind. Es werden Ausdrücke für die Übertragung von Impuls und Energie vom Rand auf den Strom aufgestellt, die durch den statisch errechneten Durchschnitt aller möglichen Scheibenkollisionen Wand-Strom erhalten werden. Wir verbessern die von Jenkins und Richman (1986) entwickelten Ausdrücke dadurch, daß bei der Berechnung der Mittelwerte eine erweiterte Geschwindigkeitsverteilung, die auf der Momentmethode beruht, einbezogen wurde. Außerdem entwickeln wir die Verteilungsfunktion an einem Punkt so nahe an der Wand, daß positive Gleitgeschwindigkeiten garantiert sind. Wir untersuchen eine zweidimensionale Scherströmung mit diesen Randbedingungen, die durch die parallelen unebenen Ränder getrieben wird. Die konstitutive Theorie, die wir anwenden, beinhaltet sowohl den Einfluß der Teilchenkollisionen als auch den des Teilchentransports auf die Übertragung von Impuls und Energie innerhalb der Strömung. Wir zeigen, wie die Profile der Geschwindigkeit, der Granu-lartemperatur und des Festkörperanteils, die sich ergeben, durch Veränderungen der Randgeometrie beeinflußt werden. Weiterhin können wir voraussagen, wie die erzeugten Spannungen sich mit der Randgeometrie und dem im Strom enthaltenen Festkörperanteil verändern.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. S. Campbell and C. E. Brennen, Computer simulation of shear flows of granular material.Proc. U. S.-Japan Seminar on New Models and Constitutive Relations in the Mechanics of Granular Materials, (eds. J. T. Jenkins and M. Satake), Ithaca, New York, pp. 313–326 (1982).Google Scholar
  2. C. S. Campbell and C. E. Brennen, Computer simulation of granular shear flows,J. Fluid Mech., 151, 167–188 (1985).Google Scholar
  3. P. K. Haff, Grain flow as a fluid-mechanical phenomenon,J. Fluid Mech. 134, 401–430 (1983).Google Scholar
  4. D. M. Hanes und D. L. Inman, Observations of rapidly flowing granular-fluid materials,J. Fluid Mech., 150, 357–380 (1985).Google Scholar
  5. K. Hui, P. K. Haff, J. E. Ungar and R. Jackson, Boundary conditions for high-shear grain flows,J. Fluid Mech., 145, 223–233 (1984).Google Scholar
  6. J. T. Jenkins and S. B. Savage, A theory for the rapid flow of identical smooth, nearly elastic particles,J. Fluid Mech., 130, 187–202 (1983).Google Scholar
  7. J. T. Jenkins and M. W. Richman, Grad's 13-moment system for a dense gas of inelastic spheres,Arch. Rat. Mech. Anal., 87, 355–377 (1985a).Google Scholar
  8. J. T. Jenkins and M. W. Richman, Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks,Phys. Fluids, 28, 3485–3494 (1985b).Google Scholar
  9. J. T. Jenkins and M. W. Richman, Boundary conditions for plane flows of smooth, nearly elastic, circular disks,J. Fluid Mech., 171, 53–69 (1986).Google Scholar
  10. J. T. Jenkins and F. Mancini, Balance laws and constitutive relations for plane flows of a dense, binary mixture of smooth, nearly elastic circular disks,J. Appl. Mech., 54, 27–34 (1987).Google Scholar
  11. P. C. Johnson and R. Jackson, Frictional-collisional constitutive relations for granular material, with application to plane shearing,J. Fluid Mech., 176, 67–94 (1987).Google Scholar
  12. C. K. K. Lun, S. B. Savage, D. J. Jeffrey and N. Chepurniy, Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield,J. Fluid. Mech., 140, 223–256 (1984).Google Scholar
  13. R. K. Raymond and H. H. Shen, Effects of frictional and anisotropic collision on the constitutive relations for a simple shear flow of spheres,Int. J. Engng. Sci., 24, 1015–1029 (1986).Google Scholar
  14. S. B. Savage and M. Sayed, Stresses developed by dry cohesionless granular materials sheared in an annular shear cell,J. Fluid Mech., 142, 391–430 (1984).Google Scholar
  15. S. B. Savage and S. Mckeown, Shear stresses developed during rapid shear of concentrated suspensions of large spherical particles between concentric cylinders,J. Fluid Mech., 127, 453–472 (1983).Google Scholar
  16. H. Shen and N. L. Ackermann, Constitutive equations for a simple shear flow of a disk shaped granular mixture,Int. J. Engng, Sci., 7, 829–843 (1984).Google Scholar
  17. H. Shen and N. L. Ackermann, Energy diffusion in a granular flow of disk shaped solids,Int. J. Engng. Sci., 24, 551–556 (1986).Google Scholar
  18. L. Verlet and D. Levesque, Integral equations for classical fluids III. The hard discs system,Mol. Phys., 46, 969–980 (1982).Google Scholar
  19. O. R. Walton and R. L. Braun, Viscosity, granular-temperature and stress calculations for shearing assemblies of inelastic, frictional disks,J. Rheol., 30, 949–980 (1986a).Google Scholar
  20. O. R. Walton and R. L. Braun, Stress calculations for assemblies of inelastic spheres in uniform shear,Acta Mech., 63, 73–86 (1986b).Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1988

Authors and Affiliations

  • M. W. Richman
    • 1
  • C. S. Chou
    • 1
  1. 1.Dept. of Mechanical Engineering, Higgins LaboratoriesWorcester Polytechnic InstituteWorcesterUSA

Personalised recommendations