Advertisement

The Kramers problem: Velocity slip and defect for a hard sphere gas with arbitrary accommodation

  • S. K. Loyalka
  • K. A. Hickey
Original Papers

Abstract

The half-space problem of rarefied gas flow (the Kramers problem) is considered for the linearized Boltzmann equation and arbitrary gas-surface interaction. Accurate numerical results for the velocity slip coefficient and velocity defect are obtained for the rigid sphere interaction and Maxwellian boundary condition.

Keywords

Mathematical Method Boltzmann Equation Hard Sphere Velocity Slip Rigid Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. K. Loyalka and J. H. Ferziger, Phys. Fluids10, 1833 (1967).Google Scholar
  2. [2]
    S. K. Loyalka, Z. Naturforschung26a, 964 (1971); J. Chem. Phys.48, 5432 (1968).Google Scholar
  3. [3]
    S. K. Loyalka, Phys Fluids14, 2291 (1971).Google Scholar
  4. [4]
    T. Klinc and I. Kuscer, Phys. Fluids15, 1013 (1972).Google Scholar
  5. [5]
    C. Cercignani,Mathematical Methods in Kinetic Theory, Plenum, New York, 1968.Google Scholar
  6. [6]
    M. M. R. Williams,Mathematical Methods in Particle Transport Theory, p. 231 and 251. Butterworths, London, 1971.Google Scholar
  7. [7]
    S. K. Loyalka, N. Petrellis and T. S. Storvick, Phys. Fluids18, 1098 (1975).Google Scholar
  8. [8]
    S. K. Loyalka, Phys Fluids18, 1666 (1975).Google Scholar
  9. [9]
    M. A. Reynolds, J. J. Smolderen and J. F. Wendt, InRarefied Gas Dynamics, vol. 1. (Ed. M. Befker and M. Fiebig), p. A-21. DFVLR-Press, Porz Wahn 1974.Google Scholar
  10. [10]
    C. Cercignani,Theory and Applications of the Boltzmann Equation, Elsevier, New York 1987.Google Scholar
  11. [11]
    S. K. Loyalka and K. A. Hickey, Phys. FluidsA 1, 612 (1989).Google Scholar
  12. [12]
    S. K. Loyalka, Phys. FluidsA 1, 403 (1989).Google Scholar
  13. [13]
    S. K. Loyalka, S. A. Hamoodi and R. V. Tompson, Phys. FluidsA 1, 384 (1989).Google Scholar
  14. [14]
    S. K. Loyalka, S. A. Hamoodi and R. V. Tompson, Phys. FluidsA 1, 384 (1989).Google Scholar
  15. [15]
    K. A. Hickey and S. K. Loyalka, J. Vac. Sci. Tech. (submitted).Google Scholar
  16. [16]
    S. K. Loyalka, Phys. Fluids (submitted).Google Scholar
  17. [17]
    S. L. Gorelov and M. N. Kogan, Fluid Dynamics3, 96 (1968).Google Scholar
  18. [18]
    R. B. Bird, Progress in Astro. and Aero.51, 323 (1977).Google Scholar
  19. [19]
    Y. Sone, T. Ohwada and K. Aoki, Phys. FluidsA 1, 363 (1989).Google Scholar

Copyright information

© Birkhäuser Verlag 1990

Authors and Affiliations

  • S. K. Loyalka
    • 1
  • K. A. Hickey
    • 1
  1. 1.Nuclear Engineering Program and Particulate Systems Research CenterUniversity of Missouri-ColumbiaColumbiaUSA

Personalised recommendations