Existence of KAM tori in the phase-space of lattice vortex systems

  • Chjan C. Lim
Original Papers

Abstract

Under very mild conditions on the circulations, and for arbitrary vortex configurations, the existence of quasi-periodic solutions for a lattice vortex model is shown.

Control over the size of the perturbation in the KAM-theory is achieved by uniform scalings of the circulations, the vortex separations, and time. Thus, additional restrictions on the circulations and the ratios of vortex separations are not required; this makes the result physically meaningful.

Keywords

Vortex Mathematical Method Mild Condition Additional Restriction Lattice Vortex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. I. Arnol'd, Russ. Math. Survey18(5), 9 (1963).Google Scholar
  2. [2]
    J. Moser, Nachr. Akad. Wiss. Gott. Math. Phys. KL.2, 1 (1962).Google Scholar
  3. [3]
    V. I. Arnold,Math. Methods of Classical Mechanics, Springer-Verlag, Berlin 1980.Google Scholar
  4. [4]
    J. Moser,Stable and Random Motions in Dynamical Systems, Princeton U. Press 1973.Google Scholar
  5. [5]
    J. Moser and C. L. Siegel,Lectures on Celestial Mechanics, Springer-Verlag, Berlin 1971.Google Scholar
  6. [6]
    S. Sternberg,Celestial Mechanics Pt. II, Benjamin, New York 1969.Google Scholar
  7. [7]
    C. C. Lim, Bull, AMS20(1), 35 Jan. (1989).Google Scholar
  8. [8]
    H. Lamb,Hydrodynamics, Dover, New York.Google Scholar
  9. [9]
    C. C. Lim,Quasi-periodic dynamics of desingularized vortex models, Physica37D, 497–507 (1989).Google Scholar
  10. [10]
    M. V. Melander, N. J. Zabusky, and A. S. Styczek, J. Fluid Mech.167, 95 (1986).Google Scholar
  11. [11]
    C. C. Lim,Canonical transformations and graph theory, Phys. Lett. A.138, 258–266 (1989).Google Scholar
  12. [12]
    C. C. Lim,Binary Trees, Symplectic Matrices and Canonical Transformations for Classical N-body Problems, IMA preprint #480, submitted for publication.Google Scholar
  13. [13]
    C. C. Lim,Symplectic transformations and graphs, submitted for publication, 1989.Google Scholar
  14. [14]
    N. E. Kochin et. al.,Theoretical Hydromechanics, Interscience, New York 1964.Google Scholar
  15. [15]
    T. von Karman, Gött. Nach. Math. Phys. Kl. 509 (1911).Google Scholar
  16. [16]
    L. Rosenhead, Proc. Roy. Soc. London Ser.A134, 170 (1932).Google Scholar
  17. [17]
    C. C. Lim and L. Sirovich, Phys. Fluids31(5).Google Scholar
  18. [18]
    L. Sirovich, Phys. Fluids28(9), 2723 (1985).Google Scholar
  19. [19]
    C. C. Lim and L. Sirovich, Phys. Fluids29(12), 3910 (1986).Google Scholar
  20. [20]
    C. C. Lim, Physica30D, 343 (1988).Google Scholar
  21. [21]
    R. Krasny, J. Fluid Mech.167, 65 (1986).Google Scholar
  22. [22]
    R. Caflisch and J. Lowengrub,Convergence of the Point Vortex Method for Vortex Sheets, preprint.Google Scholar
  23. [23]
    R. T. Pierrehumbert and S. E. Widnall, AIAA paper 79–1560 (1979).Google Scholar
  24. [24]
    P. Saffman and Szeto, Stud. Appl. Math.65, 223–248 (1981).Google Scholar
  25. [25]
    Y. H. Wan,Desingularizations of systems of point vortices, Physica32D, 277–295 (1988).Google Scholar
  26. [26]
    A. J. Chorin, J. Fluid Mech.57, 785 (1973).Google Scholar
  27. [27]
    K. M. Khanin, Physica4D, 261 (1982).Google Scholar

Copyright information

© Birkhäuser Verlag 1990

Authors and Affiliations

  • Chjan C. Lim
    • 1
  1. 1.Dept of Mathematical SciencesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations