Existence of KAM tori in the phase-space of lattice vortex systems

  • Chjan C. Lim
Original Papers


Under very mild conditions on the circulations, and for arbitrary vortex configurations, the existence of quasi-periodic solutions for a lattice vortex model is shown.

Control over the size of the perturbation in the KAM-theory is achieved by uniform scalings of the circulations, the vortex separations, and time. Thus, additional restrictions on the circulations and the ratios of vortex separations are not required; this makes the result physically meaningful.


Vortex Mathematical Method Mild Condition Additional Restriction Lattice Vortex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V. I. Arnol'd, Russ. Math. Survey18(5), 9 (1963).Google Scholar
  2. [2]
    J. Moser, Nachr. Akad. Wiss. Gott. Math. Phys. KL.2, 1 (1962).Google Scholar
  3. [3]
    V. I. Arnold,Math. Methods of Classical Mechanics, Springer-Verlag, Berlin 1980.Google Scholar
  4. [4]
    J. Moser,Stable and Random Motions in Dynamical Systems, Princeton U. Press 1973.Google Scholar
  5. [5]
    J. Moser and C. L. Siegel,Lectures on Celestial Mechanics, Springer-Verlag, Berlin 1971.Google Scholar
  6. [6]
    S. Sternberg,Celestial Mechanics Pt. II, Benjamin, New York 1969.Google Scholar
  7. [7]
    C. C. Lim, Bull, AMS20(1), 35 Jan. (1989).Google Scholar
  8. [8]
    H. Lamb,Hydrodynamics, Dover, New York.Google Scholar
  9. [9]
    C. C. Lim,Quasi-periodic dynamics of desingularized vortex models, Physica37D, 497–507 (1989).Google Scholar
  10. [10]
    M. V. Melander, N. J. Zabusky, and A. S. Styczek, J. Fluid Mech.167, 95 (1986).Google Scholar
  11. [11]
    C. C. Lim,Canonical transformations and graph theory, Phys. Lett. A.138, 258–266 (1989).Google Scholar
  12. [12]
    C. C. Lim,Binary Trees, Symplectic Matrices and Canonical Transformations for Classical N-body Problems, IMA preprint #480, submitted for publication.Google Scholar
  13. [13]
    C. C. Lim,Symplectic transformations and graphs, submitted for publication, 1989.Google Scholar
  14. [14]
    N. E. Kochin et. al.,Theoretical Hydromechanics, Interscience, New York 1964.Google Scholar
  15. [15]
    T. von Karman, Gött. Nach. Math. Phys. Kl. 509 (1911).Google Scholar
  16. [16]
    L. Rosenhead, Proc. Roy. Soc. London Ser.A134, 170 (1932).Google Scholar
  17. [17]
    C. C. Lim and L. Sirovich, Phys. Fluids31(5).Google Scholar
  18. [18]
    L. Sirovich, Phys. Fluids28(9), 2723 (1985).Google Scholar
  19. [19]
    C. C. Lim and L. Sirovich, Phys. Fluids29(12), 3910 (1986).Google Scholar
  20. [20]
    C. C. Lim, Physica30D, 343 (1988).Google Scholar
  21. [21]
    R. Krasny, J. Fluid Mech.167, 65 (1986).Google Scholar
  22. [22]
    R. Caflisch and J. Lowengrub,Convergence of the Point Vortex Method for Vortex Sheets, preprint.Google Scholar
  23. [23]
    R. T. Pierrehumbert and S. E. Widnall, AIAA paper 79–1560 (1979).Google Scholar
  24. [24]
    P. Saffman and Szeto, Stud. Appl. Math.65, 223–248 (1981).Google Scholar
  25. [25]
    Y. H. Wan,Desingularizations of systems of point vortices, Physica32D, 277–295 (1988).Google Scholar
  26. [26]
    A. J. Chorin, J. Fluid Mech.57, 785 (1973).Google Scholar
  27. [27]
    K. M. Khanin, Physica4D, 261 (1982).Google Scholar

Copyright information

© Birkhäuser Verlag 1990

Authors and Affiliations

  • Chjan C. Lim
    • 1
  1. 1.Dept of Mathematical SciencesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations