Advertisement

Boundary layer growth on a circular cylinder in a semi-infinite fluid

  • Z. Zapryanov
  • I. Lambova
Original Papers

Abstract

In this paper we study the problem of the boundary layer growth on a circular cylinder in a planar stagnation flow by the method of inner and outer expansions at small times and for finite but large Reynolds numbers. The emphasis is on the influence of the plane wall on the boundary layer detachment from the cylinder and the interaction between the cylinder and the flow. Certain correlations between some of the basic parameters are shown graphically.

Keywords

Boundary Layer Reynolds Number Mathematical Method Circular Cylinder Small Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

In dieser Arbeit wird das Anwachsen der Grenzschicht um einen kreisrunden Zylinder in einer ebenen Staupunktströmung behandelt. Verwendet wird die Methode der inneren und äußeren Entwicklung für große Reynoldssche Zahlen und kurze Zeiten. Betont wird der Einfluß einer ebenen Grenzplatte auf die Ablösung der Grenzschicht, und der gegenseitige Einfluß von Zylinder und Strömung. Gewisse Abhängigkeiten zwischen den Hauptparametern des Problems wurden auch graphisch dargestellt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Blasius,Grenzschichten in Flüssigkeiten mit kleiner Reibung, Z. Math. Phys.56, 1 (1908).Google Scholar
  2. [2]
    S. Goldstein and L. Rosenhead,Boundary layer growth, Proc. Cambr. Phil. Soc.32, 392 (1936).Google Scholar
  3. [3]
    H. Görtler,Verdrängungswirkung der laminaren Grenzschicht und Druckwiderstand, Ing. Arch.14, 1 (1944).Google Scholar
  4. [4]
    E. Watson,Boundary layer growth, Proc. Roy. Soc.A 231, 104 (1955).Google Scholar
  5. [5]
    M. van Dyke,Perturbation methods in fluid mechanics (1964).Google Scholar
  6. [6]
    C-Yi Wang,Separation and stall of an impulsively started elliptic cylinder, J. Appl. Mech.,E 34, No. 4, 823 (1967).Google Scholar
  7. [7]
    Z. Zapryanov,Boundary layer growth around a parabolic cylinder, Theor. and Appl. Mech., BAS2, 5 (1974).Google Scholar
  8. [8]
    S. Slavchev,Boundary layer growth on a circular cylinder, Theor. and Appl. Mech., BAS4, 49 (1975).Google Scholar
  9. [9]
    G. Simeonov,On the motion from rest of a class of cylinders. Elliptic cylinder case. Theor. and Appl. Mech., BAS1, 64 (1977).Google Scholar
  10. [10]
    G. Jeffery,The rotation of two circular cylinders in a viscous fluid. Proc. Roy. Soc.A 101, 169 (1922).Google Scholar
  11. [11]
    Y. Takaisi,The forces on a circular cylinder moving with low speeds in a semi-infinite viscous liquid bounded by a plane wall, J. Phys. Soc. Japan10, Nr. 5, 407 (1955).Google Scholar
  12. [12]
    S. Wakiya,Application of bipolar coordinates to the two-dimensional creeping motion of a liquid: II. Some problems for two circular cylinders in viscous fluid. J. Phys. Soc. Japan39, Nr. 6, 1603 (1975).Google Scholar
  13. [13]
    A. M. J. Davis and M. E. O'Neill,Separation in a slow linear flow past a cylinder and a plane, J. Fluid Mech.81, 3, 551 (1977).Google Scholar
  14. [14]
    J. M. Dorrepaal and M. E. O'Neill,The existence of free eddies in a streaming Stokes flow, Q. J. Mech. Appl. Math.XXXII, Pt. 2, 95 (1979).Google Scholar
  15. [15]
    D. Telionis,Unsteady viscous flows, Springer-Verlag, New York-Heidelberg-Berlin 1981.Google Scholar
  16. [16]
    I. Proudman and K. Johnson,Boundary layer growth near a rear stagnation point, J. Fluid Mech.12, 2, 161 (1962).Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1986

Authors and Affiliations

  • Z. Zapryanov
    • 1
  • I. Lambova
    • 1
  1. 1.Dept. of Fluid MechanicsInstitute of Mechanics and Biomechanics BASSofiaBulgaria

Personalised recommendations