Advertisement

Randwertprobleme und Methode der inneren Parallelen: eine gemeinsame Erweiterung zweier Ungleichungen von Pólya

  • Panagiotis Chatzidimou
  • Joseph Hersch
Original Papers

Zusammenfassung

Die „Methode der inneren Parallelen“ von Makai und Pólya wird hier auf das Randwertproblem (3) angewendet. Die sich ergebenden Schranken (11) und (11′) für das FunktionalQ(α) enthalten als Grenzfälle die von Pólya [9] erhaltenen Schranken (2) und (1) für die Torsionssteifigkeit (Fallα=0) bzw. für den Grundton einer Membran (Fallαλ1.

Summary

We apply here the “method of interior parallels” of Makai and Pólya to the boundary value problem (3). The resulting bounds (11) and (11′) for the functionalQ(α) contain as limit cases the bounds (2) and (1) obtained by Pólya [9] for torsional rigidity (caseα=0) and for the lowest eigenfrequency of a membrane (caseαλ1).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    C. Bandle,Bounds for the solutions of boundary value problems. J. Math. Anal. Appl.54, 706–716 (1976).Google Scholar
  2. [2]
    C. Bandle,Isoperimetric inequalities and applications. Pitman, London 1980.Google Scholar
  3. [3]
    J. Hersch,Une symétrisation différente de celle de Steiner. L'Enseignement Math., 2e série,5, 219–220 (1959).Google Scholar
  4. [4]
    J. Hersch,Contribution to the method of interior parallels applied to vibrating membranes. Studies in math. analysis an related topics, Stanford Univ. Press, 132–139 (1962).Google Scholar
  5. [5]
    J. Hersch,The method of interior parallels applied to polygonal or multiply connected membranes. Pacific J. Math.13, 1229–1238 (1963).Google Scholar
  6. [6]
    M.-Th. Kohler-Jobin,Isoperimetric monotonicity and isoperimetric inequalities of Payne-Rayner type for the first eigenfunction of the Helmholtz problem. Z. Angew. Math. Phys.32, 625–646 (1981).Google Scholar
  7. [7]
    E. Makai,Bounds for the principal frequency of a membrane and the torsional rigidity of a beam. Acta Sci. Math. (Acta Szeged)20, 33–35 (1959).Google Scholar
  8. [8]
    L. E. Payne & H. F. Weinberger,Some isoperimetric inequalities for membrane frequencies and torsional rigidity. J. Math. Anal. Appl.2, 210–216 (1961).Google Scholar
  9. [9]
    G. Pólya,Two more inequalities between physical and geometrical quantities. J. Indian Math. Soc.24, 413–419 (1960).Google Scholar
  10. [10]
    G. Pólya,Circle, sphere, symmetrization, and some classical physical problems. Modern Mathematics for the Engineer, 2nd series, ed. E. F. Beckenbach, McGraw-Hill, 420–441 (1961).Google Scholar
  11. [11]
    G. Pólya & G. Szegö,Isoperimetric inequalities in mathematical physics. Princeton Univ. Press, 1951.Google Scholar
  12. [12]
    B. Sz.-Nagy,Über Parallelmengen nichtkonvexer ebener Bereiche. Acta Sci. Math. (Acta Szeged)20, 36–47 (1959).Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1984

Authors and Affiliations

  • Panagiotis Chatzidimou
    • 1
  • Joseph Hersch
    • 1
  1. 1.Eidg. Technische HochschuleZürich

Personalised recommendations