Advertisement

The asymptotic analyses of non-linear waves in magneto-thermoelastic solids with thermal relaxation

  • Antonino Valenti
Original Papers

Summary

We investigate the magneto-thermoelastic model with one-dimensional deformation proposed in [1] when Fourier's law is replaced by Cattaneo's Eq. [4]. By means of an asymptotic analysis, we point out the main features of the non-linear wave processes related to different hypotheses based on the order of magnitude of physical parameters connected to thermal relaxation, heat and electrical conduction. In the various cases we obtain the evolution equations which govern the wave amplitude.

Keywords

Fourier Electrical Conduction Evolution Equation Alla Physical Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Sommario

In questa Nota si prende in esame il modello della magneto-thermoelasticità con deformazioni undimensionali proposto in [1], sostituendo peró alla legge di Fourier l'equazione di Cattaneo [4]. Facendo uso di metodi perturbativi, si mette in evidenza il carattere dei processi ondosi non-lineari connessi con different ipotesi sugli ordini di grandezza dei parametri fisici legati alla conduzione del calore, al rilassamento termico e alla conducibilità elettrica finita. Nei vari casi si deducono le equazioni di evoluzione che governano l'ampiezza d'onda.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Paria,On Magneto-Thermo-Elastic Plane Waves. Proc. Cambridge Phil. Soc.58, 527–531 (1962).Google Scholar
  2. [2]
    A. Donato,The Burgers' equation in magneto-thermo-elasticity with one-dimensional deformation. J. Appl. Math. Phys. (ZAMP)27, 281–284 (1976).Google Scholar
  3. [3]
    T. Taniuti and C. C. Wei,Reductive perturbation method in nonlinear wave propagation, I. J. Phys. Soc. Japan24, 941–946 (1968).Google Scholar
  4. [4]
    C. Cattaneo,Sulla conduzione del calore. Atti Sem. Mat. Fis. Modena3, 83–101 (1948).Google Scholar
  5. [5]
    K. Hutter,The foundations of thermodynamics, its basic postulates and implications. A review of modern thermodynamics. Acta Mech.27, 1–54 (1977).Google Scholar
  6. [6]
    A. Morro e T. Ruggeri,Propagazione del calore ed equazioni costitutive, Quaderno CNR, Pitagora, Bologna 1984.Google Scholar
  7. [7]
    M. Chester,Second sound in solids. Phys. Rev.131, 2013–2015 (1963).Google Scholar
  8. [8]
    C. C. Ackerman, B. Bentman, H. A. Fairbank and R. A. Guyer,Second Sound in solid Helium. Phys. Rev. Lett.16, 789–791 (1966).Google Scholar
  9. [9]
    C. C. Ackerman and W. C. Overton Jr.,Second Sound in Solid Helium-3. Phys. Rev. Lett22, 764–766 (1969).Google Scholar
  10. [10]
    C. C. Ackerman and R. A. Guyer,Temperature pulses in dielectric solids. Ann. Phys.50, 128–185 (1968).Google Scholar
  11. [11]
    A. H. Nayfeh and S. Nemat-Nasser,Electromagneto-thermoelastic plane waves in solids with thermal relaxation. J. Appl. Mech.39, Trans. ASME94, 108–113 (1972).Google Scholar
  12. [12]
    A. Valenti,Onde piane nella magneto-termoelasticità dei solidi incomprimibili. Atti Ist. Veneto di Scienze, Lettere ed ArtiCXLIV, 149–158 (1985–86).Google Scholar
  13. [13]
    D. Fusco,Some comments on wave motions described by non-homogeneous quasilinear first order hyperbolic systems. Mecc.17, 128–137 (1982).Google Scholar
  14. [14]
    T. Kakutani and T. Kawahara,Weak ion-acoustic shock waves. J. Phys. Soc. Japan29, 1068–1073 (1970).Google Scholar
  15. [15]
    A. Donato and D. Fusco,Wave features related to a mathematical model describing pulse transmission in a nerve fibre. Int. J. Non-lin. Mech.19, 61–68 (1984).Google Scholar
  16. [16]
    D. Fusco and N. Manganaro,Nonlinear wave features of a hyperbolic model describing dissipative magnetofluid dynamics, to appear in J. de Mecanique.Google Scholar
  17. [17]
    S. Kaliski,Wave equations of thermo-electric-magneto-elasticity. Proa, Vibr. Probl.3, 231–265 (1965).Google Scholar
  18. [18]
    P. Germain,Progressive waves. Jber. DGLR, 1971, Köln 1972, pp. 11–30.Google Scholar
  19. [19]
    G. Boillat,Ondes asymptotiques non linéaires. Ann. Mat. Pura Appl.61, 31–44 (1976).Google Scholar
  20. [20]
    B. R. Seymour and E. Varley,High frequency, periodic disturbances in dissipative systems. I: Small amplitude, finite rate theory. Proc. Roy. Soc. London314, 387–415 (1970).Google Scholar
  21. [21]
    J. Engelbrecht,Theory of nonlinear wave propagation with application to the interaction and inverse problems. Int. J. Non-linear Mech.12, 189–201 (1977).Google Scholar
  22. [22]
    D. Fusco,Onde non lineari dispersive e dissipative. Boll U.M.I. (5)16-A, 450–458 (1979).Google Scholar
  23. [23]
    S. Giambo', A. Greco et P. Pantano,Sur la méthode perturbative et reductive à n-dimensions: le cas général. C. R. Acad. Sc. Paris, 289 Série A: 553–556 (1979).Google Scholar
  24. [24]
    H. W. Lord and Y. Shulman,A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids15, 299–309 (1967).Google Scholar
  25. [25]
    J. D. Achenbach,The influence of heat conduction on propagating stress jumps. J. Mech. Phys. Solids16, 273–282 (1968).Google Scholar
  26. [26]
    H. W. Lord,Ph.D. Dissertation. Northwestern University, Evanston 1966.Google Scholar
  27. [27]
    J. L. Nowinski,Theory of thermoelasticity with applications. Sijthoff & Noordhoff Int. Publ., Alphen aan Den Rijn, Netherlands, 1978, pp. 111.Google Scholar
  28. [28]
    F. Oliveri,Group analysis for a third order equation describing pulse transmission in a nerve fibre. Atti Sem. Mat. Fis. Univ. ModenaXXXIV, 55–63 (1985–86).Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1988

Authors and Affiliations

  • Antonino Valenti
    • 1
  1. 1.Dipartimento di MatematicaUniversità di CataniaCataniaItaly

Personalised recommendations