Nonlinear breaking of waves in an electrically conducting and radiating gas

  • Radhe Shyam
  • V. D. Sharma
Original Papers

Abstract

The effects of radiative transfer are treated by the use of a differential approximation which is valid over the entire optical depth range from the transparent limit to the optically thick limit. The singular surface theory is used to determine the modes of wave propagation and to evaluate the behaviour at the wave head. It is shown that there are two modes of wave propagation namely (i) the radiation induced waves which are always damped, and (ii) the modified magnetogasdynamic waves which break at the wave front if the initial discontinuity is sufficiently strong. The effects of thermal radiation, the magnetic field intensity, the finite electrical conductivity and the initial wave front curvature on the non-linear breaking of modified magnetogasdynamic waves are discussed.

Keywords

Wave Propagation Radiative Transfer Optical Depth Magnetic Field Intensity Initial Wave 

Zusammenfassung

Der Einfluß der Strahlung wird mit Hilfe von Differential-Näherungen behandelt, die im ganzen Bereich von optischen Tiefen Gültigkeit haben, von der Transparenz bis zur optisch dicken Grenze. Die Theorie singulärer Flächen wird benützt um die Wellenausbreitung und das Verhalten an der Wellenfront zu behandeln. Es wird gezeigt, daß es zwei Formen von Wellenausbreitung gibt, nämlich (i) Wellen erzeugt durch Strahlung, die immer gedämpft sind, und (ii) die modifizierte magnetogasdynamische Welle, die an der Front immer bricht, wenn die ursprüngliche Diskontinuität stark genug ist. Es werden die Einflüsse der Wärmestrahlung, der magnetischen Feldstärke, der endlichen elektrischen Leitfähigkeit und der ursprünglichen Wellenkrümmung auf die nicht-lineare Frontbildung untersucht.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Srinivasan and R. Ram,The growth and decay of sonic waves in a radiating gas at high temperature. Z. angew. Math. Phys.26, 307–313 (1975).Google Scholar
  2. [2]
    R. Ram,Effects of radiative heat transfer on the growth and decay of acceleration waves. Appl. Sci. Res.34, 93–104 (1978).Google Scholar
  3. [3]
    R. Shankar and M. Prasad,On sonic discontinuities in an ideal radiating gas. Z. angew. Math. Phys.30, 937–942 (1979).Google Scholar
  4. [4]
    T. Y. Thomas,The growth and decay of sonic discontinuities in ideal gases. J. Math. Mech.6, 455–469 (1957).Google Scholar
  5. [5]
    W. G. Vincenti and C. H. Kruger,Introduction to physical gasdynamics. Wiley, New York 1965, Chap. 12.Google Scholar
  6. [6]
    T. Y. Thomas,Extended compatibility conditions for the study of surfaces of discontinuity in continuum mechanics. J. Math. Mech.6, 311–322 (1957).Google Scholar
  7. [7]
    E. P. Lane,Metric differential geometry of curves and surfaces. Chicago Univ. Press, Chicago 1940, p. 209.Google Scholar
  8. [8]
    R. Shyam, V. D. Sharma, and V. V. Menon,Evolution of discontinuity at a disturbance wave-head in a radiating gas. AIAA J.19, 410–412 (1981).Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1982

Authors and Affiliations

  • Radhe Shyam
    • 1
  • V. D. Sharma
    • 1
  1. 1.School of Applied Sciences, Institute of TechnologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations