Skip to main content
Log in

Production of temperature fluctuations in grid turbulence: Wiskind's experiment revisited

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Measurements have been made in nearly-isotropic grid turbulence on which is superimposed a linearly-varying transverse temperature distribution. The mean-square temperature fluctuations,\(\overline {\vartheta ^2 } \), increase indefinitely with streamwise distance, in accordance with theoretical predictions, and consistent with an excess of production over dissipation some 50% greater than values recorded in previous experiments. This high level of\(\overline {\vartheta ^2 } \) production has the effect of reducing the ratio,r, of the time scales of the fluctuating velocity and temperature fields. The results have been used to estimate the coefficient,C, in Monin's return-to-isotropy model for the slow part of the pressure terms in the temperature-flux equations. An empirical expression by Shih and Lumley is consistent with the results of earlier experiments in whichr ≈ 1.5, C ≈ 3.0, but not with the present data where r ≈ 0.5, C ≈1.6. Monin's model is improved when it incorporates both time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

coefficient in Monin model, Eq. (5)

M :

grid mesh length

m :

exponent in power law for temperature variance,\(\overline {\vartheta ^2 } \)x m

n :

turbulence-energy decay exponent,q 2 ∝x -n

p ϑ :

production rate of\(\overline {\vartheta ^2 } /2\)

p :

pressure

q 2 :

\(\overline {u^2 } + \overline {\upsilon ^2 } + \overline {w^2 } \)

R λ :

microscale Reynolds number

r :

time-scale ratiot/t ϑ

T :

mean temperature

U :

mean velocity

\(\overline {u^2 } + \overline {\upsilon ^2 } + \overline {w^2 } \) :

mean-square velocity fluctuations (turbulent energy components)

\(\overline {\upsilon \vartheta } \) :

turbulent temperature flux

x, y, z :

spatial coordinates

β :

temperature gradient dT/dy

γ :

thermal diffusivity

ɛ :

dissipation rate ofq 2/2

β ϑ :

dissipation rate of\(\overline {\vartheta ^2 } /2\)

λ :

Taylor microscale (λ2=5νq2/ε)

λ ϑ :

temperature microscale\((\lambda _{\vartheta ^2 } = 6\gamma \overline {\vartheta ^2 } /\varepsilon _\vartheta )\)

ρ :

temperature-flux correlation coefficient,\(\overline {\upsilon \vartheta } \)/v′ϑ′

ξ :

dimensionless distance from the grid,x/M

References

  • Alexopoulos, C. C.; Keffer, J. F. 1971: Turbulent wakes in a passively stratified fluid. Phys. Fluids 142, 216–224

    Google Scholar 

  • Budwig, R.; Tavoularis, S.; Corrsin, S. 1985: Temperature fluctuations and heat flux in grid-generated isotropic turbulence with streamwise and transverse mean-temperature gradients. J. Fluid Mech. 153, 441–460

    Google Scholar 

  • Corrsin, S. 1951: The decay of isotropic temperature fluctuations in an isotropic turbulence. J. Aero. Sci. 18, 417–423

    Google Scholar 

  • Corrsin, S. 1952: Heat transfer in isotropic turbulence. J. App. Phys. 23, 113–118

    Google Scholar 

  • Dakos, T. 1989: Fundamental heat transfer studies in grid generated homogeneous turbulence. PhD Thesis, University of London

  • Dakos, T.; Gibson, M. M. 1987: On modelling the pressure terms of the scalar flux equations. Turbulent Shear Flows 5, 7–18

    Google Scholar 

  • Dakos, T.; Gibson, M. M. 1992: The turbulence contribution to the pressure term in the scalar flux equations. In: Studies in turbulence (ed. Gatski, T. B., Sarkar, S., Speziale, C. G.) Springer pp 529–541

  • George, W. K.; Gibson, M. M. 1992: The self-preservation of homogeneous shear flow turbulence. Exp. Fluids. 13, 229–238

    Google Scholar 

  • Gibson, M. M.; Jones, W. P.; Kanellopoulos, V. E. 1989: Turbulent temperature mixing layer: measurement and modelling. Turbulent Shear Flows 6, 119–128

    Google Scholar 

  • Gibson, M. M.; Launder, B. E. 1978: Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech. 86, 491–511

    Google Scholar 

  • Gibson, M. M.; Verriopoulos, C. A. 1984: Turbulent boundary layer on a mildly curved convex surface, 2. Temperature field measurements. Exp. Fluids 2, 73–80

    Google Scholar 

  • Gibson, M. M;; Verriopoulos, C. A.; Vlachos, N. S. 1984: Turbulent boundary layer on a mildly curved convex surface, 1. Mean flow and turbulence measurements. Exp. Fluids 2, 17–24

    Google Scholar 

  • Launder, B. E. 1976: Heat and mass transfer, in Turbulence ed (Bradshaw P.). Topics in Applied Physics 12, Springer, pp 231–287

  • Mohamed, M. S.; LaRue, J. C. 1990: The decay power law in grid-generated turbulence. J. Fluid Mech. 219, 195–214

    Google Scholar 

  • Monin, A. S. 1965: On the symmetry properties of turbulence in the surface layer of air, Isv. Atmos. Ocean. Phys. I, 45

    Google Scholar 

  • Rotta, J. C. 1951: Statistische Theorie Nichthomogener Turbulenz I & II, Z. Phys. 129, 547–573 and 131, 51–77

    Google Scholar 

  • Shih, T. H.; Lumley, J. L. 1986: Influence of the timescale ratio on scalar flux relaxation: modelling Sirivat and Warhaft's homogeneous passive scalar fluctuations. J. Fluid Mech. 162, 211–222

    Google Scholar 

  • Sirivat, A.; Warhaft, Z. 1983: The effect of a passive cross-stream temperature gradient on the evolution of temperature variance and heat flux in grid turbulence. J. Fluid Mech. 128, 323–346

    Google Scholar 

  • Sreenivasan, K. R.; Tavoularis, S.; Henry, R.; Corrsin, S. 1980: Temperature fluctuations and scales in grid-generated turbulence. J. Fluid Mech. 100, 597–621

    Google Scholar 

  • Venkataramani, K. S.; Chevray, R. 1978: Statistical features of heat transfer in grid-generated turbulence: constant-gradient case, J. Fluid. Mech. 86, 513–543

    Google Scholar 

  • Warhaft, Z.; Lumley, J. L. 1978: An experimental study of the decay of temperature fluctuations in grid-generated turbulence. J. Fluid. Mech. 88, 659–684

    Google Scholar 

  • Wiskind, H. K. 1962: A uniform gradient turbulent experiment, J. Geophys. Res. 67, 3033–3048

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibson, M.M., Dakos, T. Production of temperature fluctuations in grid turbulence: Wiskind's experiment revisited. Experiments in Fluids 16, 146–154 (1993). https://doi.org/10.1007/BF00944916

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00944916

Keywords

Navigation