Experiments in Fluids

, Volume 16, Issue 2, pp 97–104 | Cite as

Spectral analysis of wall turbulence with a bicircular electrochemical probe

  • C. Deslouis
  • F. Huet
  • O. Gil
  • B. Tribollet
Originals

Abstract

The calculation of the mass flux/velocity gradient transfer function at a wall in the direction parallel to the wall and perpendicular to the mean flow direction, has been performed in linear conditions. This transfer function is relevant to the difference of the mass fluxes between two semicircular surfaces separated by an infinitely thin gap aligned with the flow direction.

Electrochemical measurements in turbulent flow were performed with segmented electrodes having this geometry and devised by a photolithographic technique. The spectra of the velocity gradient fluctuations in the longitudinal and transverse directions were calculated and hence the turbulence intensities.

Keywords

Transfer Function Spectral Analysis Flow Direction Transverse Direction Velocity Gradient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Py, B.; Gosse, J. 1969: Sur la réalisation d'une sonde polaro- graphique sensible à la direction de l'écoulement. C. R. Acad. Sci. 269, 401Google Scholar
  2. Wein, O.; Sobolik, V. 1987: Theory of direction sensitive probes for electrodiffusion measurement of wall velocity gradients, Coll. Czech. Commun. 52, 2169Google Scholar
  3. Deslouis, C.; Gil, O.; Sobolik, V. 1990: Electrodiffusional probe for measurement of the wall shear rate vector. Int. J. Heat Mass Transfer, 33, 1363Google Scholar
  4. Py, B.; 1973: Etude tridimensionnelle de la sous-couche visqueuse dans une veine rectangulaire par des mesures de transfert de matière en paroi. Int. J. Heat Mass Transfer 16, 129Google Scholar
  5. Nakoryakov, V. E.; Burdukov, A. P.; Kashinsky, O. N.; Geshev, P. I. 1986: Electrodiffusion Method of Investigation into the Local Structure of Turbulent Flows (Edited by V.E. Gasenko), NovosibirskGoogle Scholar
  6. Wein, O.; Sobolik, V. 1989: Segmented electrodiffusion probes, sim- ultaneous measurement of shear rate and normal flow compo- nent. Col. Czech. Commun. 54, 3043Google Scholar
  7. Sirkar, K. K.; Hanratty, T. J. 1970: The limiting behaviour of the turbulent transverse velocity component close to a wall. J. Fluid Mech. 44, 605Google Scholar
  8. Deslouis, C.; Huet, F.; Robin, S.; Tribollet, B. (1993): Spectral anal- ysis of wall turbulence with photolithography devised electro- chemical probes. Int. J. Heat Mass Transfer 36, 823Google Scholar
  9. Robin, S. 1987: Etude de la turbulence pariétale par la méthode électrochimique, Thèse de Doctorat de l'Université Paris 6Google Scholar
  10. Deslouis, C.; Gil, O.; Tribollet, B. 1990: Frequency response of electrochemical sensors to hydrodynamic fluctuations. J. Fluid Mech. 215, 85Google Scholar
  11. Geshev, P. I. 1991: Inertial characteristics of velocity and shear stress electrochemical probes. J. Applied Electrochem. 21, 1058Google Scholar
  12. Labraga, L.; Tournier, C.; Florent, P. 1991: Experimental study of the frequency response of electrochemical split probes to trans- versal velocity fluctuations. Exp. Fluids 11, 325Google Scholar
  13. Newman, J. 1991: Electrochemical systems. Prentice Hall, 2nd editionGoogle Scholar
  14. Deslouis, C.; Tribollet, B.; Vorotyntsev, M. A. (1991) Diffusion- convection impedance at small electrodes. J. Electrochem. Soc. 138, 2651Google Scholar
  15. Abramowitz, M.; Stegun, I. A. (1972) Handbook of Mathematical Functions, Dover Publications, NYGoogle Scholar
  16. Deslouis, C.; Tribollet, B. (1985) Mass transfer for a modulated flow at a rotating disk electrode: Asymptotic solutions. J. Electroanal. Chem. 185, 171Google Scholar
  17. Gil, O. 1990: Réponse en fréquence de microsondes élec- trochimiques, Thèse de Doctorat de l'Université Paris 6Google Scholar
  18. Mao, Z.; Hanratty, T. J. 1991: Application of an inverse mass transfer method to the measurement of turbulent fluctuations in the velocity gradient at the wall. Exp. Fluids 11, 65–73Google Scholar
  19. Lyons, S. L.; Nicolaides, C.; Hanratty, T. J. 1988: The size of turbulent eddies close to a wall. AIChE Journal 34, 938–945Google Scholar
  20. Phillips, W. R. C. 1987: The wall region of a turbulent boundary layer. The Physics of Fluids, 30, n∘8, 2354Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • C. Deslouis
    • 1
  • F. Huet
    • 1
  • O. Gil
    • 1
  • B. Tribollet
    • 1
  1. 1.UPR 15 du CNRS “Physique des Liquides et Electrochimie” Université Pierre et Marie Curie, Tour 22, 4 place JussieuParis CedexFrance

Personalised recommendations