Advertisement

Dynamic and static nonlinear analysis of cylindrically orthotropic circular plates with nonuniform edge constraints

  • K. H. Ruei
  • C. Jiang
  • C. Y. Chia
Original Papers

Abstract

Based on dynamic von Kármán-type equations a single-mode analysis is carried out for large-amplitude flexural forced vibration of a cylindrically orthotropic circular plate with its edge restrained nonuniformly and elastically against rotation. Numerical results are presented for static large deflection and nonlinear free and forced vibrations of isotropic and cylindrically orthotropic plates with sinusoidally restrained edges. Present values are compared with available data.

Keywords

Mathematical Method Nonlinear Analysis Circular Plate Forced Vibration Large Deflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Aus dynamischen Gleichungen vom von Kármánschen Typus für die erzwungenen Schwingungen einer zylindrisch-orthotropischen Kreisplatte mit großen Amplituden und mit variabler elastischer Einspannung längs des Randes ausgehend wird eine einzelne Schwingungsform analysiert. Numerische Resultate für große statische Auslenkungen und für nichtlineare freie und erzwungene Schwingungen isotroper und zylindrisch-orthotroper Platten mit sinusoidaler Entspannung längs des Randes werden vorgelegt. Diese Resultate werden mit Werten aus der Literatur verglichen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Y. Chia,Nonlinear analysis of plates, McGraw-Hill, New York 1980.Google Scholar
  2. [2]
    J. Ramachandran,Large amplitude vibration of circular plates with mixed boundary conditions. Comput. & Struct.4, 871–877 (1974).Google Scholar
  3. [3]
    J. L. Nowinski,Some static and dynamic problems concerning nonlinear behavior of plates and shallow shells with discontinuous boundary conditions. Int. J. Nonl. Mech.10, 1–14 (1975).Google Scholar
  4. [4]
    M. M. Banerjee,Note on the large deflection of circular plates supported at several points along the boundary. Bull. Cal. Math. Soc.68, 279–284 (1976).Google Scholar
  5. [5]
    W. E. Alzheimer and R. T. Davis.Nonlinear unsymmetrical bending of an annular plate. J. Appl. Mech.35, 190–192 (1968).Google Scholar
  6. [6]
    J. T. Tielking,Asymmetric bending of annular plates. Int. J. Solids Struct.16, 361–373 (1980).Google Scholar
  7. [7]
    A. W. Leissa, P. A. A. Laura and R. H. Gutierrez,Transverse vibrations of circular plates having nonuniform edge constraints. J. Acoust. Soc. Am.66, 180–184 (1979).Google Scholar
  8. [8]
    P. A. A. Laura and G. M. Ficcadenti,Transverse vibrations and elastic stability of circular plates of variable thickness and with nonuniform boundary conditions. J. Sound. Vib.77, 303–310 (1981).Google Scholar
  9. [9]
    C. L. Kantham,Bending and vibration of elastically restrained circular plates. J. Franklin Inst.265, 483–491 (1958).Google Scholar
  10. [10]
    N. Yamaki,Influence of large amplitudes on flexural vibrations of elastic plates. Z. Angew. Math. Mech.41, 501–510 (1961).Google Scholar
  11. [11]
    J. N. Nowinski,Cylindrically orthotropic circular plate. Z. Angew. Math. Phys.11, 218–228 (1960).Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1984

Authors and Affiliations

  • K. H. Ruei
    • 1
  • C. Jiang
    • 1
  • C. Y. Chia
    • 1
  1. 1.Dept. of Civil EngineeringThe University of CalgaryCalgaryCanada

Personalised recommendations