Molecular and Cellular Biochemistry

, Volume 147, Issue 1–2, pp 187–192 | Cite as

Inhibition of (Na/K)-ATPase by electrophilic substances: Functional implications

  • Albert Breier
  • Attila Ziegelhöffer
  • Tania Stankovičová
  • Peter Dočolomanský
  • Peter Gemeiner
  • Alena Vrbanová
Part III: Signal Transduction


The effect of electrophilic substances: p-bromophenylisothiocyanate (PBITC); fluoresceinisothiocyanate (FITC); [4-isothiocyanatophenyl-(6-thioureidohexyl)-carbamoylmethyl]-ATP (ATPITC); 2,4,6-trinitrobezenesulfonic acid (TNBS); 1-(5-nitro-2-furyl)-2-phenylsulfonyl-2-furylcarbonyl ethylene (FE1); 1-(5-phenylsulfonyl-2-furyl)-2-phenylsulfonyl-2-furylcarbonyl ethylene (FE2) and 1-(5-phenylsulfonyl-2-furyl)-2-phenylsulfonyl-2-tienocarbonyl ethylene (FE3) on the sarcolemmal (Na/K)-ATPase isolated from guinea-pig hearts was studied. FITC and PBITC were found to inhibit competitively the activation of (Na/K)-ATPase by ATP. Being for the enzyme inhibitor and substrate at the same time ATPITC does not offered clear kinetic behavior. However, the activation of (Na/K)-ATPase by sodium and potassium ions was inhibited non-competitively by all three isothiocyanates. These data indicated that isothiocyanates may interact predominantly in the ATP-binding site of the enzyme molecule. In contrary to isothiocyanates TNBS and FE1 (FE2 and FE3 were ineffective) inhibited the activation of (Na/K)-ATPase by ATP non-competitively i.e., their interaction in the ATP-binding site seemed to be improbable. Nevertheless, TNBS and FE1 both manifested affinities to that moiety of (Na/K)-ATPase molecule which is binding potassium. More specific was the effect of FE1 that showed clearly competitive inhibition of potassium-stimulation of the enzyme activity. FE1 exerted also an ouabain-like effect on the mechanical activity of isolated perfused guinea-pig heart. This result indicates that FE1 seems to exert a selective inhibition of the (Na/K)-ATPase not only in vitro but also in integrated cardiac tissue.

Key words

(Na/K)-ATPase electrophilic reagents cation binding site isolated perfused heart 5-nitrofurylethylene 

Abbreviations and symbols








2,4,6-trinitrobenzenesulfonic acid


1-(5-nitro-2-furyl)-2-phenylsulfonyl-2-furylcarbonyl ethylene


1-(5-phenylsulfonyl-2-furyl)-2-phenylsulfonyl-2-furylcarbonyl ethylene


1-(5-phenylsulfonyl-2-furyl)-2-phenylsulfonyl-2-tienocarbonyl ethylene




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dhala NS, Zhao D: Cell membrane Ca2+/Mg2+ ATPase. Prog Biophys Mol Biol 52: 1–37, 1988PubMedGoogle Scholar
  2. 2.
    Skou JC, Esmann M: The Na,K-ATPase. J Bioenerg Biomembr 24: 249–261, 1992PubMedGoogle Scholar
  3. 3.
    Ziegelhöffer A, Vrbjar N, Breier A: How do the ATPases work? Biomed Biochim Acta 45: S211-S214, 1986PubMedGoogle Scholar
  4. 4.
    Isnesi G, Kirtley MR: Structural features of cation transport ATPases. J Bioenerg Biomembr 24: 271–283, 1992PubMedGoogle Scholar
  5. 5.
    Shull GE, Shwartz A, Lingrel JB: Amino-acid sequence of the catalytic subunit of the (Na++K+)-ATPase deduced from a complementary DNA. Nature (London) 316: 691–695, 1985Google Scholar
  6. 6.
    Farley RA, Tran CM, Carilli CT, Hawke D, Shively JE: The aminoacid sequence of a fluorescein labelled peptide from the active site of (Na,K)-ATPase. J Biol Chem 259: 9532–9535, 1984PubMedGoogle Scholar
  7. 7.
    Kirley KL, Wallick ET, Lane LK: The aminoacid sequence of the fluorescein isothiocyanate reactive site of lamb and rat kidney Na+ and K+ dependent ATPase. Biochem Biophys Res Commun 125: 767–773, 1984PubMedGoogle Scholar
  8. 8.
    Ohta T, Morohashi M, Kawamura M, Yoshida M: The aminoacid sequence of the fluorescein-labelled peptides of electric ray and brine shrimp (Na,K)-ATPase. Biochem Biophys Res Commun 130: 221–228, 1985PubMedGoogle Scholar
  9. 9.
    Pedemonte CH, Kirley TL, Treuheit MJ, Kaplan JH: Inactivation of the Na,K-ATPase by modification of Lys 501 with 4-acetamido-4′-isothiocyanatostibene-2,2′-disulfonic acid (SITS). FEBS Lett 314: 97–100, 1992PubMedGoogle Scholar
  10. 10.
    Breier A, Turi Nagy L, Ziegelhöffer A, Monošíková R: Principles of selectivity of sodium and potassium binding sites of the NA+/K+-ATPase. A corollary hypothesis. Biochim Biophys Acta 946: 129–134, 1988PubMedGoogle Scholar
  11. 11.
    Wand H, Rudek M, Dautzenberg H: Determination of amino group insoluble carrier material using 2,4,6-trinitrobenzenesulfonic acid. Z Chem 18: 224, 1978Google Scholar
  12. 12.
    De Pont JJHHM, Van Emst-De Vries SE, Bonting SL: Amino groups modification of (Na++K+)-ATPase. J Bioenerg Biomembr 16: 263–281, 1984PubMedGoogle Scholar
  13. 13.
    Breier A, Monošiková R, Ziegelhöffer A, Džurba A: Heart sarcolemmal (N++K+)-ATPase has an essential aminogroup in the potassium binding site on the enzyme molecule. Gen Physiol Biophys 5: 537–544, 1986PubMedGoogle Scholar
  14. 14.
    Breier A, Monošiková R, Ziegelhöffer A: Modification of primary aminogroup in rat heart sarcolemma by 2,4,6-trinitrobenzene sulfonic acid in respect to the activities of (Na++K+)-ATPase, Na+-ATPase, K+-pNPPase. Function of potassium binding sites. Gen Physiol Biophys 6: 103–108, 1987PubMedGoogle Scholar
  15. 15.
    Drobnica L, Kristián P, Augustin J: The chemistry of the-NCS group. In: S. Patai (ed.) The Chemistry of Cyanates and their Thio Derivatives. John Wiley and Sons, New York, 1977, pp 1003–1221Google Scholar
  16. 16.
    Baláž Š, Végh D, Šturdik E, Augustin J, Liptaj T, Kováč J: Substitution reactions of some (5-nitro-2-furyl)ethylene derivatives with thiols. Collect Czech Chem Commun 52: 431–436, 1987Google Scholar
  17. 17.
    Rosenberg M, Šturdik E, Liptaj T, Bella J, Végh D, Považanec F, Sitkey V: Reactions of 1-(5-nitro-2-furyl)-2-nitroethylene with amino and hydroxyl groups. Collect Czech Chem Commun 50: 470–481, 1985Google Scholar
  18. 18.
    Ziegelhöffer A, Breier A, Džurba A, Vrbjar N: Selective and reversible inhibition of heart sarcolemmal (Na++K+)-ATPase by p-bromophenyl isothiocyanate. Evidence for a sulfhydryl group in the ATP-binding site of the enzyme. Gen Physiol Biophys 2: 447–456, 1983PubMedGoogle Scholar
  19. 19.
    Ziegelhöffer A, Breier A, Monošíková R, Džurba A: Some properties of the active site and cation binding site of the heart sarcolemmal (Na++K+)-ATPase. Biomed Biochim Acta 46: S553-S556, 1987PubMedGoogle Scholar
  20. 20.
    Breier A, Turi Nagy L, Ziegelhöffer A, Monošíkova R, Dzurba A: Hypothetical structure of the ATP-binding site of (Na++K+)-ATPase. Gen Physiol Biophys 8: 283–286, 1989PubMedGoogle Scholar
  21. 21.
    Špirková K, Dočolomanský P, Kada R: Novel trisubstituted ethylenes and their reactions with nucleophiles. Chem Papers 46: 329–332, 1991Google Scholar
  22. 22.
    Gemeiner P, Bíliková Z, Uhrin D, Šoltes L, Mosbach K: ATP derivatives for biorecognition technology: High-performance liquid chromatography and nuclear paramagnetic resonance spectra. Biotechnol Appl Biochem 11: 176–183, 1989Google Scholar
  23. 23.
    Gemeiner P, Drobnica L: Selective and reversible modification of essential thiol groups of D-glyceraldehyd-3-phosphate dehydrogenase by isothiocyanates. Experientia 35: 857–858, 1979PubMedGoogle Scholar
  24. 24.
    Taussky HH, Shorr E: A microcolorimetric method for determination of inorganic phosphorus. J Biol Chem 202: 675–685, 1953PubMedGoogle Scholar
  25. 25.
    Markwell MAK, Haas SM, Bieber LL, Tolbert NE: A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Analytical Biochem 87: 206–210, 1978Google Scholar
  26. 26.
    Mardh S: Stabilizing effects by Mg2+ on Na,K-ATPase. Acta chem scand B36: 269–271, 1982PubMedGoogle Scholar
  27. 27.
    Lüllmann H, Peters T, Reuner G, Ruther T: Influence of Ouabain and dihydroouabain on the circular dichroism of cardiac plasmalemmal microcosms. Naunyn Schmiedelberg's Arch Pharmacol 290: 1–19, 1975Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Albert Breier
    • 1
  • Attila Ziegelhöffer
    • 2
  • Tania Stankovičová
    • 2
  • Peter Dočolomanský
    • 1
  • Peter Gemeiner
    • 3
  • Alena Vrbanová
    • 1
  1. 1.Institute of Molecular Physiology and GeneticsSlovak Academy of SciencesBratislavaSlovak Republic
  2. 2.Institute for Heart ResearchSlovak Academy of SciencesBratislavaSlovak Republic
  3. 3.Institute of ChemistrySlovak Academy of SciencesBratislavaSlovak Republic

Personalised recommendations