Advertisement

Evolution scheme to compute periodic solutions of first-order nonlinear equations containing translation operators

  • J. J. Keller
  • W. Egli
Original Papers

Summary

An evolution scheme is proposed to compute periodic solutions of equations of the general form
$$f\frac{{df}}{{dt}} + Lf = 0,$$
whereL is a linear operator which may include translations. The convergence properties of the proposed scheme are investigated and compared with the convergence properties of alternative numerical solution methods. The application of the evolution scheme is illustrated with the computation of solutions of equations arising in nonlinear wave propagation.

Keywords

Wave Propagation Linear Operator Periodic Solution Mathematical Method Nonlinear Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Zur Berechnung periodischer Lösungen von Gleichungen der Form
$$f\frac{{df}}{{dt}} + Lf = 0,$$
wird ein Evolutionsschema vorgeschlagen. Hierbei seiL ein linearer Operator, der beispielsweise auch Translationsoperatoren enthalten darf. Die Konvergenzeigenschaften des Schemas werden untersucht und mit den Konvergenzeigenschaften anderer numerischer Lösungsmethoden verglichen. Die Anwendung des Evolutionsschemas wird an Beispielen nichtlinearer Wellengleichungen erläutert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. E. Mitchell, L. Crocco, and W. A. Sirignano,Nonlinear longitudinal instability in rocket motors with concentrated combustion. Combust. Sci. Technol.1, 35 (1969).Google Scholar
  2. [2]
    B. T. Chu,Analysis of self-sustained nonlinear vibration in a pipe containing a heater. Phys. Fluids6, 1638 (1963).Google Scholar
  3. [3]
    M. P. Mortell and B. R. Seymour,The evolution of a self-sustained oscillation in a nonlinear continuous system. J. Appl. Mech., Trans. ASME Series E,40, 53 (1973).Google Scholar
  4. [4]
    J. J. Keller,Nonlinear self-excited acoustic oscillations. Z. angew. Math. Phys.29, 934 (1978).Google Scholar
  5. [5]
    J. J. Keller and M. P. Escudier,Flow-excited resonances in covered cavities. J. Sound Vibr.86, 199 (1983).Google Scholar
  6. [6]
    C. E. Mitchell,Axial mode shock wave combustion instability in liquid propellant rocket engines. Princeton University Department of Aerospace and Mechanical Sciences Technical Report No. 798, NASA CR-72259, (1967).Google Scholar
  7. [7]
    C. M. Rader and B. Gold,Digital filter design techniques in the frequency domain. Proc. IEEE55, 149 (1967).Google Scholar

Copyright information

© Birkhäuser Verlag Basel 1983

Authors and Affiliations

  • J. J. Keller
    • 1
  • W. Egli
    • 1
  1. 1.Brown Boveri Research CentreBadenSwitzerland

Personalised recommendations