Advertisement

Viscous flow through corrugated tube by boundary element method

  • N. Phan-Thien
  • C. J. Goh
  • M. B. Bush
Brief Reports

Summary

The creeping flow of a Newtonian fluid through a sinusoidally-corrugated tube is solved by the Boundary Element Method. Agreement with another numerical method is noted. In addition, it is shown that previous perturbation theory is valid only when the corrugation amplitude is small (<0.3a) and the wavelength of the corrugation is large (>3πa), wherea is the mean radius of the tube.

Keywords

Perturbation Theory Mathematical Method Boundary Element Boundary Element Method Newtonian Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Das Problem der schleichenden Bewegung eines Newton'schen Fluids durch ein Rohr mit sinusförmig gewellter Wand wird mit Hilfe der “Boundary Element”-Methode gelöst. Übereinstimmung mit einer anderen numerischen Methode wird festestellt. Zudem wird gezeigt, daß eine früher gefundene Störungstheorie nur gültig ist wenn die Wellenamplitude klein (<0.3a) und die Wellenlänge groß (>3πa) ist (a=mittlerer Rohrradius).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. C. Payatakes, Chi Tien and R. M. Turian,A new model for granular porous media, A. I. Ch. E. J.19, 58 (1973).Google Scholar
  2. [2]
    J. C. Slattery,Interfacial effects in the entrapment and displacement of residual ore, A. I. CH. E. J.20, 1145 (1974).Google Scholar
  3. [3]
    R. E. Sheffield and A. B. Metzner,Flow of non-linear fluids through porous media, A. I. CH. E. J.22, 736 (1976).Google Scholar
  4. [4]
    A. G. Dodson, P. Townsend and K. Walters,On the flow of Newtonian and non-Newtonian liquids through corrugated press, Rheol. Acta10, 508 (1971).Google Scholar
  5. [5]
    M. Lessen and P. S. Huang,Poiseuille flow in a pipe with axially symmetric wavy walls, Phys. Fluids19, 945 (1976).Google Scholar
  6. [6]
    N. Phan-Thien,On the Stokes flow of viscous fluids through corrugated pipes, ASME. J. Appl. Mech.47, 961 (1980).Google Scholar
  7. [7]
    M. A. Neira and A. C. Payatakes,Collocation solution of creeping Newtonian flow through sinusoidal tubes, A. I. Ch. E. J.25, 725 (1979).Google Scholar
  8. [8]
    C. A. Brebbia,The boundary element method for engineers, Pentech Press, London 1980.Google Scholar
  9. [9]
    M. B. Bush and R. I. Tanner,Numerical solution of viscous flows using integral equation methods, Int. J. Num. Method. Fluids3, 71 (1983).Google Scholar
  10. [10]
    M. B. Bush, J. F. Milthorpe and R. I. Tanner,Finite element and boundary element methods for extrusion computations, J. Non-Newt. Fluid Mech., in press (1984).Google Scholar

Copyright information

© Birkhäuser Verlag 1985

Authors and Affiliations

  • N. Phan-Thien
    • 1
  • C. J. Goh
    • 1
  • M. B. Bush
    • 1
  1. 1.Mechanical Engineering Dept.Sydney UniversitySydneyAustralia

Personalised recommendations