Archives of Microbiology

, Volume 133, Issue 1, pp 50–54 | Cite as

Effect of organic matter on growth and cell yield of ammonia-oxidizing bacteria

  • Antje Krümmel
  • Heinz Harms
Original Papers


The effect of various organic compounds on the growth of ammonia-oxidizing bacteria was examined.Nitrosococcus oceanus, a strongly halophilic bacterium, had a very low tolerance to organic matter compared with other organisms tested. Organic compounds scarcely affected the growth of theNitrosomonas strains whereas nitrite formation by bothNitrosococcus mobilis strains was inhibited by nearly all of the substances tested. The growth ofNitrosospira strain Nsp1 was enhanced more than 30% by acetate and formate, but not growth was detectable in the presence of pyruvate. On the contrary,Nitrosospira strain Nsp5 was stimulated only by pyruvate. Nitrite formation by the twoNitrosovibrio tenuis strains tested was similar. The growth of both strains was enhanced considerably by formate and glucose; acetate and, to a greater extent, pyruvate inhibited these bacteria.

In batch culture, the energy efficiency of autotrophically grown ammonia-oxidizing bacteria varied from strain to strain. The cell yield of mixotrophically grown cultures, per unit of ammonia oxidized, was increased in comparison with autotrophic ones. No heterotrophic growth was detected.

Key words

Ammonia-oxidizing bacteria Nitrosococcus Nitrosomonas Nitrosospira Nitrosoyibrio Mixotrophic growth Energy efficiency Cell yield Heterotrophic growth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Borichewski RM, Umbreit WW (1966) The growth ofThiobacillus thiooxidans on glucose. Arch Biochem Biophys 116:97–102Google Scholar
  2. Clark C, Schmidt EL (1966) Effect of mixed culture ofNitrosomonas europaea stimulated by uptake and utilization of pyruvate. J Bacteriol 91:367–373Google Scholar
  3. Clark C, Schmidt EL (1967a) Growth response ofNitrosomonas europaea to amino acids. J Bacteriol 93:1302–1307Google Scholar
  4. Clark C, Schmidt EL (1967b) Uptake and utilization of amino acids by resting cells ofNitrosomonas europaea. J Bacteriol 93:1309–1315Google Scholar
  5. Engel H (1960) Die Nitrifikanten. In: Ruhland W (ed) Handbuch Pflanzemphysiol, vol V/2. Springer, Berlin Göttingen Heidelberg, pp 664–681Google Scholar
  6. Gundersen K (1955) Effects of B-vitamins and amino-acids on nitrification. Physiol Plant 8:136–141Google Scholar
  7. Harms H, Koops H-P, Wehrmann H (1976) An ammonia-oxidizing bacterium,Nitrosovibrio tenuis nov. gen. nov. sp. Arch Microbiol 108:105–111Google Scholar
  8. Heubült I (1929) Untersuchungen über Nitribakterien. Planta 8:398–422Google Scholar
  9. Hofman T, Lees H (1952) The biochemistry of nitrifying organisms. 2. The free-energy efficiency ofNitrosomonas. Biochem J 52:140–142Google Scholar
  10. Hooper AB (1969) Biochemical basis of the obligate autotrophy inNitrosomonas europaea. J Bacteriol 97:776–779Google Scholar
  11. Kelly DP (1971) Autotrophy: concepts of lithotrophic bacteria and their organic metabolism. Ann Rev Microbiol 25:177–210Google Scholar
  12. Kingma Boltijes TY (1935) Untersuchungen über die nitrifizierenden Bakterien. Arch Mikrobiol 6:79–138Google Scholar
  13. Koops, H-P (1969) Der Nutzeffekt der NH4+-Oxidation durchNitrosocystis oceanus Watson. Arch Mikrobiol 65:115–135Google Scholar
  14. Koops H-P, Harms H, Wehrmann H (1976) Isolation of a moderate halophilic ammonia-oxidizing bacterium,Nitrosococcus mobilis nov. sp. Arch Microbiol 107:277–282Google Scholar
  15. Krümmel A, Harms H (1980) Der Einfluß anorganischer Ionen auf das Wachstum von zweiNitrosomonas-Stämmen aus verschiedenen Biotopen. Mitt Inst Allg Bot Hamburg 17:89–100Google Scholar
  16. Kuenen JG, Veldkamp H (1973) Effects of organic compounds on growth of chemostat cultures ofThiomicrospira pelophila, Thiobacilus thioparus andThiobacillus neapolitanus. Arch Mikrobiol 94:173–190Google Scholar
  17. Laudelout H, Simonart PC, van Droogenbroeck R (1968) Calorimetric measurement of free energy utilization byNitrosomonas andNitrobacter. Arch Mikrobiol 63:256–277Google Scholar
  18. London J, Rittenberg SC (1966) Effects of organic matter on the growth ofThiobacillus intermedius. J Bacteriol 91:1062–1069Google Scholar
  19. Lu MC, Matin A, Rittenberg SC (1971) Inhibition of growth of obligately chemolithotrophic thiobacilli by amino acids. Arch Mikrobiol 79:354–366Google Scholar
  20. Martiny H (1979) Vergleichende Untersuchungen über die Aufnahme und den Einbau organischer C-Verbindungen durch chemolithoautotrophe ammoniakoxidierende Bakterien. Diss Univ HamburgGoogle Scholar
  21. Matin A (1978) Organic nutrition of chemolithotrophic bacteria. Ann Rev Microbiol 32:433–468Google Scholar
  22. Pan P, Umbreit WW (1972) Growth of obligate autotrophic bacteria on glucose in a continuous flow-through apparatus. J Bacteriol 109:1149–1155Google Scholar
  23. Rittenberg SC (1969) The role of exogenous organic matter in the physiology of chemolithotrophic bacteria. Adv Microbial Physiol 3:159–196Google Scholar
  24. Schön G (1965) Untersuchungen über den Nutzeffekt vonNitrobacter winogradskyi Buch. Arch Mikrobiol 50:111–132Google Scholar
  25. Smith AJ, Hoare DS (1977) Specialist phototrophs, lithotrophs, and methylotrophs: a unity among a diversity of procaryotes. Bacteriol Rev 41:419–448Google Scholar
  26. Suzuki I, Kwok S-C, Dular U (1976) Competitive inhibition of ammonia oxidation inNitrosomonas europaea by methane, carbon monoxide or methanol. FEBS Lett 72:117–120Google Scholar
  27. Watson SW (1971) Relsolation ofNitrosospira briensis S. Winogradsky and H. Winogradsky 1933. Arch Mikrobiol 75:179–188Google Scholar
  28. Watson SW, Graham LB, Remsen CG, Valois FW (1971) A lobular, ammonia-oxidizing bacterium,Nitrosolobus multiformis nov. gen. nov. sp. Arch Mikrobiol 76:183–203Google Scholar
  29. Williams PJB, Watson SW (1968) Autotrophy inNitrosocystis oceanus. J Bacteriol 96:1640–1648Google Scholar
  30. Wullenweber M (1975) Versuche zum Wachstum ammoniakoxidierender Bakterien in statischer Kultur. Diplomarbeit, Univ HamburgGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Antje Krümmel
    • 1
  • Heinz Harms
    • 1
  1. 1.Abteilung für MikrobiologieInstitut für Allgemeine Botanik der Universität HamburgHamburg 52Germany

Personalised recommendations