Optical and Quantum Electronics

, Volume 28, Issue 5, pp 613–622 | Cite as

Reduction of inelastic scattering effect by introduction of GalnAs/GalnP strain-compensated superlattice into multi-quantum barriers

  • T. Loh
  • T. Miyamoto
  • Y. Kurita
  • F. Koyama
  • K. Iga
Materials and Physics


The effect of inelastic scattering on the electron reflection in multi-quantum barriers (MQBs) has been examined using the damped resonant tunnelling model for the first time. The electron reflectivity in the virtual barrier region for unstrained GalnAs/InP MQB deteriorates below 100% by about 10% for phase relaxation time of 0.22ps. We propose a strain-compensated GalnAs/GalnP MQB which not only has virtual barrier 4 times as high as that of an unstrained MQB, but whose reflectivity deterioration is reduced to less than 5% in comparison with 10% for unstrained MQB for the same phase relaxation time. We have also successfully grown a Ga0.25In0.75As (1.5% compressive) well/Ga0.25In0.75P (1.2% tensile) barrier short-period superlattice with six wells by chemical beam epitaxy, which exhibits the possibility of fabrication of the strain-compensated MQBs.


Reflection Relaxation Time Communication Network Inelastic Scattering Scattering Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. A. Andrekson, R. F. Kazarinov, N. A. Olsson, T. Tanbun-Ek andR. A. Logan,IEEE J. Quantum Electron. 30 (1994) 219.Google Scholar
  2. 2.
    K. Iga, H. Uenohara andK. Koyama,Electron. Lett. 22 (1986) 1010.Google Scholar
  3. 3.
    L. C. Chiu andA. Yariv,Jpn. J. Appl. Phys. 21 (1982) L305.Google Scholar
  4. 4.
    Y. Inaba, T. Uchida, N. Yokouchi, T. Miyamoto, F. Koyama andK. Iga,Jpn. J. Appl. Phys. 32 (1993) 760.Google Scholar
  5. 5.
    H. Shimizu, T. Fukushima, K. Nishikata, Y. Hirayama andM. Irikawa,14th IEEE Int. Semiconductor Laser Conference, 1994, p. 26.Google Scholar
  6. 6.
    J. Rennie, M. Okajima, K. Itaya andG. Hatakoshi,IEEE J. Quantum Electron. 30 (1994) 2781.Google Scholar
  7. 7.
    D. Campi, C. Rigo, C. Cacciatore andH. C. Neitzert,Appl. Phys. Lett. 65 (1994) 2148.Google Scholar
  8. 8.
    M. Jonson andA. Grincwajg,Appl. Phys. Lett. 51 (1987) 1729.Google Scholar
  9. 9.
    H. Yuming andS. P. Stapleton,IEEE J. Quantum Electron. 29 (1993) 327.Google Scholar
  10. 10.
    Y. Zohta,Jpn. J. Appl. Phys. 32 (1993) L177.Google Scholar
  11. 11.
    S. Datta,Quantum Phenomena (Addison-Wesley, Reading, MA, 1989) p. 23.Google Scholar
  12. 12.
    M. P. C. M. Krijn,Semicond. Sci. Technol. 6 (1991) 27.Google Scholar
  13. 13.
    T. Y. Wang andG. B. Stringfellow,J. Appl. Phys. 67 (1990) 344.Google Scholar
  14. 14.
    T. Uchida, T. K. Uchida, N. Yokouchi, T. Miyamoto, F. Koyama andK. Iga,J. Crystal Growth 120 (1992) 357.Google Scholar
  15. 15.
    A. Ponchet, A. Rocher, J. Y. Emery, C. Starck andL. Goldstein,J. Appl. Phys. 74 (1993) 3778.Google Scholar
  16. 16.
    X. S. Jiang andP. K. L. Yu,Appl. Phys. Lett. 65 (1994) 2536.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • T. Loh
    • 1
  • T. Miyamoto
    • 1
  • Y. Kurita
    • 1
  • F. Koyama
    • 1
  • K. Iga
    • 1
  1. 1.Precision and Intelligence LaboratoryTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations