Skip to main content
Log in

Self-organization mechanism of GalnP quantum wires in (GaP) m /(lnP) m short-period binary superlattices for GalnP/AllnP multi-quantum-wire (MQWR) lasers

  • Laser Diodes
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A mechanism for self-organization of GalnP strained quantum wires in (GaP) m /(lnP) m short-period binary superlattice (SPBS) is discussed. To elucidate the self-organization mechanism, GalnP/AllnP compressively strained multi-quantum-wire (CS-MQWR) lasers were fabricated, changing the superlattice monolayer numberm in (GaP) m /(lnP) m SPBS active layers. The self-organization occurred form>1.2, determined from transmission electron microscopy images and from the anisotropic TM/TE polarization ratio in electroluminescence, i.e. an anisotropic dipole moment.

The mechanism by which quantum wire axes were selected to the\([01\bar 1]\) direction is discussed in terms of the anisotropy in adatom diffusion between [011] and\([01\bar 1]\) directions. To confirm this, (GaP)1.2/(lnP)1.2 SPBS layers were grown on GaAs (100) substrates misoriented towards the [011] direction, on which the [011] adatom diffusion is suppressed. Enhanced quantum wires self-organization by substrate misorientation was observed, showing that anisotropic diffusion played an important role.

The mechanism modelling of the lateral compositional modulation is discussed considering the initial growth of films largely mismatched to bottom crystals. The lateral compositional modulation is supposed to be related to GaP wire-like nuclei induced by large strain energy in the first GaP layer growth in (GaP) m /(lnP) m SPBSs.

GalnP/AllnP CS-MQWR lasers with lowJ th values of 257 A cm−2 were obtained atm=1.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Miyamoto, Y. Miyake, M. Asada andY. Suematsu,IEEE J. Quantum Electron. QE-25 (1989) 2001.

    Google Scholar 

  2. Y. Arakawa andH. Sakaki,Appl. Phys. Lett. 40 (1982) 939.

    Google Scholar 

  3. S. Ueno, Y. Miyake andM. Asada,Jpn. J. Appl. Phys. 31 (1992) 286.

    Google Scholar 

  4. J. Yoshida andK. Kishino,Conf. Dig. 14th IEEE Int. Semiconductor Laser Conf., Maui, Hawaii, 1994, T3.2, p. 73.

  5. N. Kirstaedter, N. N. Ledenstov, M. Grundman et al., Conf. Dig. 14th IEEE Int. Semiconductor Laser Conf., Maui, Hawaii, 1994, W4PD2, p. 6.

  6. P. J. Pearah, A. C. Chen, A. M. Moy, K. C. Hsieh andK. Y. Cheng,IEEE J. Quantum Electron. QE-30 (1994) 608.

    Google Scholar 

  7. A. Kikuchi, K. Kishino andY. Kaneko,Jpn. J. Appl. Phys. 30 (1991) 865.

    Google Scholar 

  8. A. Kikuchi, K. Kishino andY. Kaneko,J. Appl. Phys. 66 (1989) 4557.

    Google Scholar 

  9. Y. Kaneko, I. Nomura, K. Kishino andA. Kikuchi,J. Appl. Phys. 74 (1993) 819.

    Google Scholar 

  10. K. Shiraishi,Appl. Phys. Lett. 60 (1992) 1363.

    Google Scholar 

  11. M. D. Pashley, K. W. Habern andJ. M. Gaines,J. Vac. Sci. Technol. B9 (1991) 938.

    Google Scholar 

  12. J. Yoshida, K. Kishino, A. Kikuchi andI. Nomura,IEEE J. Selected Topics in Quantum Electronics 1 (1995) 173.

    Google Scholar 

  13. A. Gomyo, T. Suzuki andS. Iijima,Phys. Rev. Lett. 60 (1988) 2645.

    Google Scholar 

  14. S. Minagawa andM. Kondow,Electron. Lett. 25 (1989) 758.

    Google Scholar 

  15. K. Kishino, K. Kikuchi, I. Nomura andY. Kaneko,Thin Solid Films 231 (1993) 173.

    Google Scholar 

  16. M. Asada, Y. Miyamoto andY. Suematus,Jpn. J. Appl. Phys. 24 (1985) L95.

    Google Scholar 

  17. H. Fujii, Y. Ueno, A. Gomyo, K. Endo andT. Suzuki,Appl. Phys. Lett. 61 (1992) 737.

    Google Scholar 

  18. S. Ohkouchi, I. Tanaka andN. Ikoma,Jpn. J. Appl. Phys. 33 (1994) 1489.

    Google Scholar 

  19. T. Nomura, K. Ishikawa, K. Murakami andM. Haghino,J. Cryst. Growth 127 (1993) 584.

    Google Scholar 

  20. X. Zhang, D. W. Pashley, J. H. Neave, J. Zhang andB. A. Joyce,J. Cryst. Growth 121 (1992) 381.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, J., Kishino, K., Jang, D.H. et al. Self-organization mechanism of GalnP quantum wires in (GaP) m /(lnP) m short-period binary superlattices for GalnP/AllnP multi-quantum-wire (MQWR) lasers. Opt Quant Electron 28, 547–556 (1996). https://doi.org/10.1007/BF00943624

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00943624

Keywords

Navigation