Advertisement

Soviet Physics Journal

, Volume 19, Issue 6, pp 774–777 | Cite as

Lattice dynamics of CdGeP2

  • A. S. Poplavnoi
  • V. G. Tyuterev
Article
  • 20 Downloads

Abstract

The bond parameters for the nearest neighbors have been determined along with the ion charges for CdGeP2 on the basis of infrared reflection; the Cd-P and Ge-P bond matrices are similar to those for InP and GaP. The ion charges agree with those calculated from the dielectric theory. The lattice-vibration spectrum has been calculated in the long-wave limit for directions of high symmetry. The nonanalytic behavior of the frequency in the long-wave limit has also been examined. The oscillator strengths have been calculated for the optically active frequencies, and the components of the tensor for the static dielectric constant agree well with experiment.

Keywords

Reflection Dielectric Constant Oscillator Strength Active Frequency High Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Yu. F. Markov and N. B. Rashetnyak, Opt. Spektrosk.,33, 520 (1973).Google Scholar
  2. 2.
    A. Miller, G.D. Holah, and W. C. Clark, J.Phys. Chem. Sol.,35, 685 (1974).Google Scholar
  3. 3.
    A. S. Poplavnoi and V. G. Tyuterev, in: Chemical Bonds in Semiconductors and Semimetals [in Russian], Nauka i Tekhnika, Minsk (1972), p. 327.Google Scholar
  4. 4.
    A. S. Poplavnoi and V. G. Tyuterev, Fiz. Tverd. Tela,17, 313 (1975).Google Scholar
  5. 5.
    AIIBIVC2 Semiconductors [in Russian], Sov. Radio, Moscow (1974).Google Scholar
  6. 6.
    G. F. Karavaev, A. S. Poplavnoi, and V. G. Tyuterev, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 10, 42 (1970).Google Scholar
  7. 7.
    B. G. Polyak and V. A. Skokov, A Standard Program for Minimizing a Function of Many Variables [in Russian], Izd. MGU, Moscow (1967).Google Scholar
  8. 8.
    R. Banerjee and Y. P. Varshni, Can. J. Phys.,47, 451 (1969).Google Scholar
  9. 9.
    D. N. Talwar and Bal. K. Agrawal, Phys. Stat. Sol. (b),63, 441 (1974).Google Scholar
  10. 10.
    K. Hubner, Phys. Stat. Sol. (b),52, K33 (1972).Google Scholar
  11. 11.
    L. J. Sham. Phys. Rev.,188, 1431 (1969).Google Scholar
  12. 12.
    A. S. Poplavnoi and V. G. Tyuterev, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 5, 133 (1973).Google Scholar
  13. 13.
    M. Bettini, Phys. Stat. Sol. (b),69, 201 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • A. S. Poplavnoi
    • 1
    • 2
  • V. G. Tyuterev
    • 1
    • 2
  1. 1.V. D. Kuznetsov Siberian Physicotechnical Institute at Tomsk State UniversityUSSR
  2. 2.Kemerovo State UniversityUSSR

Personalised recommendations