Effect of whole-body vibration with different frequencies and intensities on auditory evoked potentials and heart rate in man

  • P. Ullsperger
  • H. Seidel
  • G. Menzel


Auditory evoked brain potentials (AEP) and electrocardiogram (ECG) were recorded from 9 healthy male subjects during sinusoidal whole-body vibration exposure (WBV) in the longitudinal (±az) direction with four frequencies (1 Hz, 2 Hz, 4 Hz, and 8 Hz) and two intensities as well as under non-WBV conditions. The sequences of the different experimental conditions were arranged according to a 9×9 Latin Square design. The sound of the electrohydraulic vibrator was masked by a constant noise level. A subtraction technique was used to eliminate vibration-synchronous activity contaminating the electroencephalogram. The AEP amplitude N1-P2 revealed systematic effects of different WBV frequencies and intensities. The amplitude decreased along with an increase in intensity (16 dB) by about 10 per cent. It diminished increasingly with a monotonic trend in the order non-WBV, WBV 8 Hz, WBV 4 Hz, WBV 2 Hz, and WBV 1 Hz. The interbeat-interval histograms computed from the ECG exhibited the highest mean values at MBV of 1 Hz, high intensity, and the lowest ones at WBV of 4 Hz, high intensity. The AEPs are reaffirmed as an informative measure for studying the WBV effect on central nervous information processing, although the modes of action are not yet fully known. Efferent influences on the acoustic input, cross-modality interaction, sensory mismatch, and changes of central nervous activation level are discussed as potential mechanisms.

Key words

Whole body vibration Auditory evoked brain potentials Heart rate Information processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bastek R, Buchholz Ch, Denisov El, Enderlein G, Kramer H, Malinskaja NN, Meister A, Metz A, Mucke R, Rhein A, Rothe R, Seidel H, Sroka Ch (1977) Comparison of the effects of sinusoidal and stochastic octave-band-wide vibrations — a multi-disciplinary study. Part I-III. Int Arch Occup Environ Health 39:143–179Google Scholar
  2. British Standards Institution 1973 BSI DD 23. Draft for development: Guide to the safety aspects of human vibration experimentsGoogle Scholar
  3. Davis H (1976) Principles of electric response audiometry. Ann Otol Rhinol Laryngol [Suppl] 85:28:25Google Scholar
  4. Davis H, Osterhammel PA, Wier CC, Gjerdingen DB (1972) Slow vertex potentials: interactions among auditory, tactile, electric and visual stimuli. Electroenceph Clin Neurophysiol 33:537–545Google Scholar
  5. Desmedt JE (1975) Physiological studies of the efferent recurrent auditory system. In: Keidel WD, Neff WD (eds) Handbook of sensory physiology, vol V. part 2. Springer, Berlin, pp 219–246Google Scholar
  6. Graybiel A (1975) Uglovye skorosti, uglovye uskorenija, uskorenija koriolisa. In: Foundations of space biology and medicine, vol. II. Izd-vo “Nauka”. National Aeronautics and Space Administration, Moskva, Washington, pp 265–32 [russian]Google Scholar
  7. Hay IS, Davis H (1971) Slow cortical evoked potentials: Interactions of auditory, vibro-tactile, and shock stimuli. Audiology 10:9–17Google Scholar
  8. International Standards Organization 1974 ISO 2631-1974 (E). Guide for the evaluation of human exposure to whole-body vibrationGoogle Scholar
  9. Kohl RL (1983) Sensory conflict theory of space motion sickness: an anatomical location for the neuroconflict. Aviat Space Environ Med 54:464–465Google Scholar
  10. Malinskaja NN (1968) Vlijanie vibracii na organizm čeloveka (Influence of vibration on man). In: Roščin AV (ed) Naučnyj obzor. Vlijanie šuma, vibracii i ul'trazvuka na organizm i profilaktika. Vypusk 1. VNIIMMTI, Moskva, pp 53–100Google Scholar
  11. Manninen O (1983) Studies of combined effects of sinusoidal whole body vibrations and noise of varying bandwidths and intensities on TTS2 in men. Int Arch Occup Environ Health 51:273–288Google Scholar
  12. Meister A, BrÄuer D, Kurerov NN, Metz A-M, Mucke R, Rothe R, Seidel H, StaroŽuk IA, Suvorov GA (1984) On the evaluation method for broad-band whole-body vibration. Ergonomics 27:959–980Google Scholar
  13. Oborne DJ (1983) Whole-body vibration and International Standard ISO 2631: a critique. Human Fact 25:55–69Google Scholar
  14. O'Hanlon JF, McCauley ME (1974) Motion sickness incidence as a function of the frequency and acceleration of vertical sinusoidal motion. Aerospace Med 45:366–369Google Scholar
  15. Okada A, Miyake H, Yamamura K, Minami M (1972) Temporary hearing loss induced by noise and vibration. J Acoust Soc Am 51:1240–1248Google Scholar
  16. Poulton EC (1978) Increased vigilance with vertical vibration at 5 Hz: an alerting mechanism. Appl Ergon 9:73–76Google Scholar
  17. Röder H, Freigang B, Kallwellis G, Rabending G (1983) Das akustisch evozierte Hirnstammpotential und seine klinische Anwendung. Psychiatr Neurol Med Psychol, Beih. 31. S. Hirzel Verlag, LeipzigGoogle Scholar
  18. Salomon G, Starr A (1963) Electromyography of middle ear muscles in man during motor activities. Acta Neurol Scand 39:161–168Google Scholar
  19. Seidel H (1981) Zur wissenschaftlichen Begründung arbeitshygienischer Grenzwerte für Ganzkörpervibration auf der Grundlage experimenteller Untersuchungen. Diss B. Akad Ärztl Fortbild der DDR, BerlinGoogle Scholar
  20. Seidel H, Bastek R, BrÄuer D, Buchholz Ch, Meister A, Metz A-M, Rothe R (1980) On human response to prolonged repeated whole-body vibration. Ergonomics 23:191–211Google Scholar
  21. Seidel H, Meister A, Metz A-M, Rothe R, Ullsperger P, Blüthner R, BrÄuer D, Menzel G, Sroka Ch (1984) Effects of exposure to whole-body vibration and noise on the TTS, performance, postural sway, and auditory evoked brain potentials. 1st Internat Conf on “The Combined Effects of Environmental Factors”, Tampere, Finland, 22–25 September 1984Google Scholar
  22. Shmarov A (1983) Brain stem and cortical auditory evoked responses before and after general vibration exposure. Electroenceph Clin Neurophysiol 55:24Google Scholar
  23. Shoenberger RW (1974) Mechanisms of vibration effects on aircrew performance. AGARD Conference preprint No 145 on vibration and combined stresses in advanced systems. Ltd. Harford House, London, pp B17-1–B17-7Google Scholar
  24. Skinner JE, Yingling CD (1977) Central gating mechanisms that regulate event-related potentials and behavior. A neural model for attention. In: Desmedt JE (ed) Attention, Voluntary contraction and event-related cerebral potentials. Prog Clin Neurophysiol 1:30–69Google Scholar
  25. Ullsperger P (1981) AbhÄngigkeit von Kennwerten evozierter Hirnpotentiale des Menschen von Äu\eren und inneren Einflu\faktoren (Ein Beitrag zur Beziehung zwischen Informationsverarbeitungsprozessen und bioelektrischer HirnaktivitÄt). Diss B. Akad Ärztl Fortbild der DDR, BerlinGoogle Scholar
  26. Ullsperger P, Seidel H (1980) On auditory evoked potentials and heart rate in man during whole-body vibration. Eur J Appl Physiol 43:183–192Google Scholar
  27. Ullsperger P, Reimer W, Mucke R, Bastek R, Rehfeldt H, Küchler G (1977) Einflu\ statischer Muskelanspannung auf akustisch evozierte Hirnpotentiale, HautwiderstandsÄnderungen und bioelektrische MuskelaktivitÄt. Acta Biol Med Germ 36:213–219Google Scholar
  28. Yokoyama T, Osako S, Yamamoto K (1974) Temporary threshold shifts produced by exposure to vibration, noise, and vibration plus noise. Acta Otolaryngol 78:207–212Google Scholar
  29. Young LR (1979) Visual-vestibular interaction. In: Talbott RE, Humphrey DR (eds) Posture and movement. Raven Press, New York, pp 177–188Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • P. Ullsperger
    • 1
  • H. Seidel
    • 1
  • G. Menzel
    • 1
  1. 1.Central Institute of Occupational Medicine of the GDRBerlinBerlinGerman Democratic Republic

Personalised recommendations