Advertisement

Journal of Optimization Theory and Applications

, Volume 47, Issue 4, pp 413–435 | Cite as

A restricted trust region algorithm for unconstrained optimization

  • J. P. Bulteau
  • J. P. Vial
Contributed Papers

Abstract

This paper proposes an efficient implementation of a trust-region-like algorithm. The trust region is restricted to an appropriately chosen two-dimensional subspace. Convergence properties are discussed and numerical results are reported.

Key Words

Unconstrained optimization trust regions curvilinear paths 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Levenberg, K.,A Method for the Solution of Certain Nonlinear Problems in Least Squares, Quarterly of Applied Mathematics, Vol. 2, pp. 164–168, 1944.Google Scholar
  2. 2.
    Marquardt, D. W.,An Algorithm for Least Squares Estimation of Nonlinear Parameters, SIAM Journal on Applied Mathematics, Vol. 11, pp. 431–441, 1963.Google Scholar
  3. 3.
    Goldfeld, S. M., Quandt, R. E., andTrotter, H. F.,Maximization by Quadratic Hill Climbing, Econometrica, Vol. 34, pp. 541–551, 1966.Google Scholar
  4. 4.
    Hebden, M. D.,An Algorithm for Minimization Using Exact Second Derivatives, Atomic Energy Research Establishment, Harwell, England, Report TP-515, 1973.Google Scholar
  5. 5.
    Moré, J. J.,The Levenberg-Marquardt Algorithm: Implementation and Theory, Proceedings of the Dundee Conference on Numerical Analysis, Edited by G. A. Watson, Springer-Verlag, Berlin, Germany, pp. 105–116, 1978.Google Scholar
  6. 6.
    Gay, D. M.,Computing Optimal Locally Constrained Steps, SIAM Journal on Sciences and Statistical Computations, Vol. 2, pp. 186–197, 1981.Google Scholar
  7. 7.
    Sorensen, D. C.,Newton's Method with a Model Trust Region Modification, SIAM Journal on Numerical Analysis, Vol. 19, pp. 409–426, 1982.Google Scholar
  8. 8.
    Moré, J. J., andSorensen, D. C.,Computing a Trust Region Step, SIAM Journal on Sciences and Statistical Computations, Vol. 4, pp. 553–572, 1983.Google Scholar
  9. 9.
    Bulteau, J. P., andVial, J. P.,Curvilinear Path and Trust Region in Unconstrained Optimization: A Convergence Analysis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, CORE Discussion Paper No. 8337, 1983.Google Scholar
  10. 10.
    Bulteau, J. P., andVial, J. P.,Unconstrained Optimization by Approximation of a Projected Gradient Path, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, CORE Discussion Paper No. 8352, 1983.Google Scholar
  11. 11.
    Moré, J. J.,Recent developments in Algorithms and Software for Trust Region Methods, Mathematical Programming—The State of the Art—Bonn 1982, Edited by A. Backen, M. Grötschel, and B. Korte, Springer-Verlag, Berlin, Germany, pp. 258–287, 1983.Google Scholar
  12. 12.
    Powell, M. J. D.,A Hybrid Method for Nonlinear Equations, Numerical Methods for Nonlinear Algebraic Equations, Edited by P. Rabinowitz, Gordon and Breach, London, England, pp. 87–114, 1970.Google Scholar
  13. 13.
    Powell, M. J. D.,Convergence Properties of a Class of Minimization Algorithms, Nonlinear Programming 2, Edited by O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, Academic Press, New York, New York, pp. 1–27, 1975.Google Scholar
  14. 14.
    Fletcher, R., andFreeman, T. L.,A Modified Newton Method for Minimization, Journal of Optimization Theory and Applications, Vol. 23, pp. 357–372, 1977.Google Scholar
  15. 15.
    Moré, J. J., andSorensen, D. C.,On the Use of Directions of Negative Curvature in a Modified Newton Method, Mathematical Programming, Vol. 16, pp. 1–20, 1979.Google Scholar
  16. 16.
    Goldfarb, D.,Curvilinear Path Steplength Algorithms for Minimization Which Use Directions of Negative Curvature, Mathematical Programming, Vol. 18, pp. 31–40, 1980.Google Scholar
  17. 17.
    Bunch, J. R., andParlett, B. N.,Direct Methods for Solving Symmetric Indefinite Systems of Linear Equations, SIAM Journal of Numerical Analysis, Vol. 8, pp. 639–655, 1971.Google Scholar
  18. 18.
    Fletcher, R.,Factorizing Symmetric Indefinite Matrices, Linear Algebra and Its Applications, Vol. 14, pp. 257–272, 1976.Google Scholar
  19. 19.
    Fletcher, R., andPowell, M. J. D.,On the Modifications of LDL T Factorizations, Mathematics of Computation, Vol. 28, pp. 1067–1087, 1974.Google Scholar
  20. 20.
    Gill, P. E., andMurray, W.,Modification of Matrix Factorizations after a Rank-One Change, The State of the Art in Numerical Analysis, Edited by D. A. H. Jacobs, Academic Press, London, England, pp. 55–83, 1977.Google Scholar
  21. 21.
    Zang, I.,A New Arc Algorithm for Unconstrained Optimization, Mathematical Programming, Vol. 15, pp. 36–52, 1978.Google Scholar
  22. 22.
    Moré, J. J., Garbow, B. S., andHillstrom, K. E.,Testing Unconstrained Optimization Software, ACM Transactions on Mathematical Software, Vol. 7, pp. 17–41, 1981.Google Scholar
  23. 23.
    Sorensen, D.,Updating the Symmetric Indefinite Factorization with Applications in a Modified Newton's Method, Argonne National Laboratory, Argonne, Illinois, Report No. ANL-77-49, 1977.Google Scholar
  24. 24.
    Engvall, J. L.,Numerical Algorithm for Solving Overdetermined Systems of Nonlinear Equations, NASA, Document No. N70-35600, 1970.Google Scholar
  25. 25.
    Zangwill, W. J.,Nonlinear Programming via Penalty Functions, Management Science, Vol. 13, pp. 344–358, 1967.Google Scholar
  26. 26.
    Davidon, W. C.,New Least Square Algorithms, Journal of Optimization Theory and Applications, Vol. 18, pp. 187–188, 1976.Google Scholar
  27. 27.
    Hock, W., andSchittkowski, K.,Test Examples for Nonlinear Programming Codes, Springer-Verlag, Berlin, Germany, 1981.Google Scholar
  28. 28.
    Dixon, L. C. W.,Conjugate Directions without Linear Searches, Journal of the Institute of Mathematics and Its Applications, Vol. 11, pp. 317–328, 1973.Google Scholar
  29. 29.
    Polak, E.,A Modified Secant Method for Unconstrained Minimization, Mathematical Programming, Vol. 6, pp. 264–280, 1974.Google Scholar
  30. 30.
    Spedicato, E.,Computational Experience with Quasi-Newton Algorithms for Minimization Problems of Moderately Large Size, CISE, Segrate, Italy, Report No. CISE-N-175, 1975.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • J. P. Bulteau
    • 1
  • J. P. Vial
    • 1
  1. 1.Center for Operations Research and EconometricsUniversité Catholique de LouvainLouvainBelgium

Personalised recommendations