Linear system identification via an asymptotically stable observer

  • M. Phan
  • L. G. Horta
  • J. N. Juang
  • R. W. Longman
Contributed Papers


This paper presents a formulation for identification of linear multivariable systems from single or multiple sets of input-output data. The system input-output relationship is expressed in terms of an observer, which is made asymptotically stable by an embedded eigenvalue assignment procedure. The prescribed eigenvalues for the observer may be real, complex, mixed real and complex, or zero corresponding to a deadbeat observer. In this formulation, the Markov parameters of the observer are first identified from input-output data. The Markov parameters of the actual system are then recovered from those of the observer and used to realize a state space model of the system. The basic mathematical formulation is derived, and numerical examples are presented to illustrate the proposed method.

Key Words

System identification observer identification pole placement state space realization Markov parameters observer Markov parameters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ho, B. L., andKalman, R. E.,Effective Construction of Linear State Variable Models from Input/Output Data, Proceedings of the 3rd Annual Allerton Conference on Circuits and Systems Theory, Monticello, Illinois, 1965.Google Scholar
  2. 2.
    Juang, J. N., andPappa, R. S.,An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction, Journal of Guidance, Control, and Dynamics, Vol. 8, No. 5, pp. 620–627, 1985.Google Scholar
  3. 3.
    Phan, M., Juang, J. N., andLongman, R. W.,On Markov Parameters in System Identification, NASA TM-104156, 1991.Google Scholar
  4. 4.
    Phan, M., Juang, J. N., andLongman, R. W.,Identification of Linear Multivariable Systems by Identification of Observers with Assigned Real Eigenvalues, Journal of the Astronautical Sciences, Vol. 40, No. 2, pp. 261–279, 1992.Google Scholar
  5. 5.
    Chen, C. W., et al.,Integrated System Identification and Modal State Estimation for Control of Large Flexible Space Structures, Journal of Guidance, Control, and Dynamics, Vol. 15, No. 1, pp. 88–95, 1992.Google Scholar
  6. 6.
    Juang, J. N., et al.,Identification of Observer/Kalman Filter Markov Parameters: Theory and Experiments, Journal of Guidance, Control, and Dynamics, Vol. 16, No. 2, pp. 320–329, 1993.Google Scholar
  7. 7.
    Phan, M., et al.,Improvement of Observer/Kalman Filter Identification by Residual Whitening, Proceedings of the 8th VPI&SU Symposium on Dynamics and Control of Large Structures, Edited by L. Meirovitch, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 1991.Google Scholar
  8. 8.
    Horta, L. G., et al.,Frequency Weighted System Identification and Linear-Quadratic Controller Design, [Proceedings of the AIAA Guidance, Navigation, and Control Conference, New Orleans, Louisiana, 1991]. Journal of Guidance, Control, and Dynamics, Vol. 16, No. 2, pp. 330–336, 1993.Google Scholar
  9. 9.
    Goodwin, G. C., andSin, K. S.,Adaptive Filtering, Prediction, and Control, Prentice-Hall, Englewood Cliffs, New Jersey, 1984.Google Scholar
  10. 10.
    Ljung, L., andSödertröm, T.,Theory and Practice of Recursive Identification, MIT Press, Cambridge, Massachusetts, 1983.Google Scholar
  11. 11.
    Phan, M., et al.,Identification of Linear Systems by an Asymptotically Stable Observer, NASA TP-3164, 1992.Google Scholar
  12. 12.
    Tanner, S. E., et al.,Mini-Mast CSI Testbed User's Guide, NASA TM-102630, 1992.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • M. Phan
    • 1
  • L. G. Horta
    • 2
  • J. N. Juang
    • 2
  • R. W. Longman
    • 3
  1. 1.Lockheed Engineering and Sciences CompanyHampton
  2. 2.Spacecraft Dynamics BranchNASA Langley Research CenterHampton
  3. 3.Columbia UniversityNew York

Personalised recommendations