Skip to main content
Log in

Waves in thin semiconductor layers with negative differential conductivity

  • Published:
Soviet Physics Journal Aims and scope

Conclusion

The wave process in semiconductor films with negative differential resistivity is peculiar in that there is a spatial increase of wave amplitude given the condition that the propagating wave has an electric field component along the direction of carrier drift. Such a condition is realized in structures with longitudinal drift when quasistatic space charge waves are amplified, and in structures with transverse drift, where quasiturbulent electromagnetic waves are amplified.

In structures with longitudinal drift all propagating modes have identical phase velocity, close to the charge carrier drift velocity. The modes differ from each other in attenuation (amplification) coefficient and potential and charge distribution over film thickness. In structures with transverse drift only the fundamental quasi-TEM type mode is propagated, with a phase velocity close to the speed of light in the medium. Higher modes are nonpropagating due to cutoff of the waveguide structure.

Experimental studies have confirmed the fundamental physical concepts and theoretical results, and have shown the promise of semiconductor structures with negative differential resistivity in uhf microelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. V. L. Ginzburg, Electromagnetic Wave Propagation in Plasma [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  2. V. L. Bonch-Bruevich, I. P. Zvyagin, and A. G. Mironov, Domain Electrical Instability in Semiconductors [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  3. M. Stil and B. Vyural', Wave Interaction in Solid Plasma [in Russian], Atomizdat, Moscow (1973).

    Google Scholar 

  4. A. I. Akhiezer, I. A. Akhiezer, R. V. Polovin, A. G. Sitenko, and K. N. Stepanov, Plasma Electrodynamics [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  5. F. G. Bass and Yu. G. Gurevich, Hot Electrons and Strong Electromagnetic Waves in Semiconductor Plasma and Gas Discharges [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  6. V. V. Vladimirov, Usp. Fiz. Nauk,115, 73 (1975).

    Google Scholar 

  7. E. A. Kaner and V. M. Yakovenko, Usp. Fiz. Nauk,115, 41 (1975).

    Google Scholar 

  8. P. M. Platzman and P. A. Wolff, Waves and Interactions in Solid State Plasmas, Academic, New York (1972).

    Google Scholar 

  9. Yu. K. Pozhela, Plasma and Current Instabilities in Semiconductors [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  10. V. E. Golant, A. P. Zhilinskii, and S. A. Sakharov, Fundamentals of Plasma Physics [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  11. M. Sumi and T. Suzuki, Appl. Phys. Lett.,13, 326 (1968).

    Google Scholar 

  12. J. C. Freeman, V. L. Newhouse, and R. L. Gunshor, Appl. Phys. Lett.,22, 641 (1973).

    Google Scholar 

  13. J. Thiennot, J. Appl. Phys.,46, 3925 (1975).

    Google Scholar 

  14. S. Lefeuvre and V. F. Hanna, Onde Electr.,56, 341 (1976).

    Google Scholar 

  15. V. I. Vas'kova and I. A. Viktorov, Akust. Zh.,13, 292 (1967).

    Google Scholar 

  16. J. H. Collins, K. M. Lakin, C. F. Quate, and H. J. Shaw, Appl. Phys. Lett.,13, 314 (1968).

    Google Scholar 

  17. V. L. Gurevich, Fiz. Tekh. Poluprovodn.,2, 1557 (1968).

    Google Scholar 

  18. Yu. V. Gulyaev, A. Yu. Karabanov, A. M. Kmita, A. V. Medved', and Sh. S. Tursunov, Fiz. Tekh. Poluprovodn.,5, 80 (1971).

    Google Scholar 

  19. L. A. Coldren and G. S. Kino, IEEE Trans. Electron. Dev.,ED-21, 421 (1974).

    Google Scholar 

  20. Yu. V. Gulyaev, S. N. Ivanov, I. M. Kotelyanskii, and G. D. Mansfel'd, Radiotekhn. Elektron.,22, 810 (1977).

    Google Scholar 

  21. B. B. Robinson, B. Vural, and J. B. Parekh, IEEE Trans. Electron. Dev.,ED-17, 224 (1970).

    Google Scholar 

  22. A. V. Vashkovskii, V. I. Zubkov, V. N. Kil'dishev, and B. A. Murmuzhev, Pis'ma Zh. Eksp. Teor. Fiz.,16, 4 (1972).

    Google Scholar 

  23. V. P. Lukomsii and Yu. A. Tsvirko, Fiz. Tverd. Tela,15, 700 (1973).

    Google Scholar 

  24. M. Masuda, N. S. Chang, and Y. Matsuo, IEEE Trans. Microwave Theory Tech.,MTT-22, 132 (1974).

    Google Scholar 

  25. Yu. V. Gulyaev and P. E. Zil'berman, Fiz. Tverd. Tela,20, 1129 (1978).

    Google Scholar 

  26. S. V. Gerus, and V. V. Tarasenko, Fiz. Tverd. Tela,16, 672 (1974).

    Google Scholar 

  27. S. S. Mikhailovskii, Fiz. Tverd. Tela,16, 3062 (1974).

    Google Scholar 

  28. K. Kumabe, Proc. IEEE,56, 2172 (1968).

    Google Scholar 

  29. A. Schlachetzki and K. Mause, Electron. Lett.,8, 640 (1972).

    Google Scholar 

  30. S. Kataoka, H. Tateno, and M. Kawashima, Electron. Lett.,5, 48 (1969).

    Google Scholar 

  31. I. Kuru and Y. Tajima, Proc. IEEE,57, 1215 (1969).

    Google Scholar 

  32. K. R. Hofmann, Electron. Lett.,5, 227 (1969).

    Google Scholar 

  33. G. S. Kino and P. N. Robson, Proc. IEEE,56, 2056 (1968).

    Google Scholar 

  34. G. S. Kino, IEEE Trans. Electron. Dev.,ED-17, 178 (1970).

    Google Scholar 

  35. H. L. Hartnagel, Electron. Lett.,5, 303 (1969).

    Google Scholar 

  36. P. Gueret, Electron. Lett.,6, 637 (1970).

    Google Scholar 

  37. R. H. Dean, IEEE Trans. Electron. Dev.,ED-19, 1144 (1972).

    Google Scholar 

  38. R. H. Dean, A. B. Dreeben, J. F. Kaminski, and A. Triano, Electron. Lett.,6, 775 (1970).

    Google Scholar 

  39. R. H. Dean and R. J. Matarese, Proc. IEEE,60, 1486 (1972).

    Google Scholar 

  40. R. H. Dean and B. B. Robinson, IEEE Trans. Electron. Dev.,ED-21, 61 (1974).

    Google Scholar 

  41. W. Frey, R. Becker, R. W. H. Englemann, and K. Keller, AEU,27, 245 (1973).

    Google Scholar 

  42. P. Gueret, Electron. Lett.,6, 197 (1970).

    Google Scholar 

  43. W. W. H. Englemann, IEEE Trans. Electron. Dev.,ED-18, 587 (1971).

    Google Scholar 

  44. K. Blotekjaer and C. F. Quate, Proc. IEEE, 52, 360 (1969).

    Google Scholar 

  45. K. Blotekjaer, IEEE Trans. Electron. Dev.,ED-17, 587 (1971).

    Google Scholar 

  46. A. A. Barybin, J. Appl. Phys.,46, 1689 (1975).

    Google Scholar 

  47. A. A. Barybin, J. Appl. Phys.,46, 1697 (1975).

    Google Scholar 

  48. A. A. Barybin, Radiotekhn. Elektron.,22, 1680 (1977).

    Google Scholar 

  49. A. A. Barybin, Izv. Vyssh. Uchebn. Zaved., Radioelektron.,20, 118 (1977).

    Google Scholar 

  50. A. A. Barybin, Mikroelektronika,7, 152 (1978).

    Google Scholar 

  51. A. A. Barybin, Radiotekhn. Elektron.,23, 1230 (1978).

    Google Scholar 

  52. A. A. Barybin, Adv. Electron. Electron Phys.,44, 99 (1977).

    Google Scholar 

  53. A. C. Baynham, IBM J. Res. Devel.,13, 568 (1969).

    Google Scholar 

  54. A. C. Baynham and D. J. Colliver, Electron. Lett.,6, 498 (1970).

    Google Scholar 

  55. P. L. Fleming, TIIER,63, 188 (1975).

    Google Scholar 

  56. F. Giaunini, C. M. Ottavi, and A. Salsano, Electron. Lett.,7, 65 (1971).

    Google Scholar 

  57. L. E. Gurevich and I. V. Ioffe, Fiz. Tverd. Tela,18, 1307 (1976).

    Google Scholar 

  58. U. R. Nejib, Int. J. Electron.,36, 81 (1974).

    Google Scholar 

  59. G. S. Simin, Fiz. Tekh. Poluprovodn.,10, 2025 (1976).

    Google Scholar 

  60. A. A. Barybin and V. M. Prigorovskii, Elektron. Tekh., Ser. “Elektron. SVCh,” No. 12, 8 (1978).

    Google Scholar 

  61. A. A. Barybin, Electron. Lett.,13, 243 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 28–41, August, 1981.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barybin, A.A., Prigorovskii, V.M. Waves in thin semiconductor layers with negative differential conductivity. Soviet Physics Journal 24, 704–717 (1981). https://doi.org/10.1007/BF00941341

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00941341

Keywords

Navigation