Journal of Optimization Theory and Applications

, Volume 47, Issue 1, pp 35–49 | Cite as

An algorithm for generalized fractional programs

  • J. P. Crouzeix
  • J. A. Ferland
  • S. Schaible
Contributed Papers


An algorithm is suggested that finds the constrained minimum of the maximum of finitely many ratios. The method involves a sequence of linear (convex) subproblems if the ratios are linear (convex-concave). Convergence results as well as rate of convergence results are derived. Special consideration is given to the case of (a) compact feasible regions and (b) linear ratios.

Key Words

Fractional programming multi-ratio programming convergence rate of convergence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schaible, S.,Analyse and Anwendungen von Quotientenprogrammen, Hain-Verlag, Meisenheim, West Germany, 1978.Google Scholar
  2. 2.
    Charnes, A., andCooper, W. W.,Goal Programming and Multi-Objective Optimization, Part I, European Journal of Operational Research, Vol. 1, pp. 39–54, 1977.Google Scholar
  3. 3.
    Crouzeix, J. P., Ferland, J. A., andSchaible, S.,Duality in Generalized Linear Fractional Programming Mathematical Programming, Vol. 27, pp. 1–14, 1983.Google Scholar
  4. 4.
    Jagannathan, R., andSchaible, S.,Duality in Generalized Fractional Programming via Farkas' Lemma, Journal of Optimization Theory and Applications, Vol. 41, pp. 417–424, 1983.Google Scholar
  5. 5.
    Schaible, S.,Fractional Programming, Zeitschrift für Operations Research, Vol. 27, pp. 39–54, 1983.Google Scholar
  6. 6.
    Schaible, S., andIbaraki, T.,Fractional Programming, European Journal of Operational Research, Vol. 12, pp. 325–338, 1983.Google Scholar
  7. 7.
    Schaible, S.,Bibliography in Fractional Programming, Zeitschrift für Operations Research, Vol. 26, pp. 211–241, 1982.Google Scholar
  8. 8.
    Dinkelbach, W.,On Nonlinear Fractional Programming, Management Science, Vol. 13, pp. 492–498, 1967.Google Scholar
  9. 9.
    Schaible, S.,Fractional Programming, II: On Dinkelbach's Algorithm, Management Science, Vol. 22, pp. 868–873, 1976.Google Scholar
  10. 10.
    Ibaraki, T.,Solving Mathematical Programs with Fractional Objective Functions, Generalized Concavity in Optimization and Economics, Edited by S. Schaible and W. T. Ziemba, Academic Press, New York, New York, pp. 441–472, 1981.Google Scholar
  11. 11.
    Ibaraki, T. Parametric Approaches to Fractional Programs, Mathematical Programming, Vol. 26, pp. 345–362, 1983.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • J. P. Crouzeix
    • 1
  • J. A. Ferland
    • 2
  • S. Schaible
    • 3
  1. 1.Département de Mathématiques AppliquéesUniversité de Clermont IIAubièreFrance
  2. 2.Département d'Informatique et de Recherche OpérationelleUniversité de MontréalMontréalCanada
  3. 3.Department of Finance and Management Science, Faculty of BusinessUniversity of AlbertaEdmontonCanada

Personalised recommendations