Advertisement

Plant Systematics and Evolution

, Volume 180, Issue 3–4, pp 137–156 | Cite as

Phylogenetic evidence for the herbaceous origin of angiosperms

  • David Winship Taylor
  • Leo J. Hickey
Article

Abstract

The ancestral angiosperm is commonly interpreted as an arborescent to shrubby magnolialean with large, multiparted, complex flowers. We examined this hypothesis using a phylogenetic analysis of new and reevaluated characters polarizabled with outgroup comparison. Our cladistic analysis of basal angiosperms placed the nonmagnolialeanChloranthaceae andPiperaceae at the bottom of the tree. We further inferred the probable ancestral states of characters not polarizable with outgroup comparison by examining their distribution among taxa at the base of our cladogram. The sum of ancestral character states suggests that the protoangiosperm was a diminutive, rhizomatous to scrambling perennial herb, with small, simple flowers.

Key words

Angiosperms evolution origin ancestral angiosperm morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archangelsky, S., Brett, D. W., 1961: Studies of Triassic fossil plants from Argentina, I.Rhexoxylon from the Ischigualasto Formation. — Roy. Soc. London Philos. Trans.244: 1–19.Google Scholar
  2. Ayensu, E. S., 1972:Dioscoreales. — London: Oxford University Press.Google Scholar
  3. Baas, P., Gregory, M., 1985: A survey of oil cells in the dicotyledons with comments on their replacement by and joint occurrence with mucilage cells. — Israel J. Bot.34: 167–186.Google Scholar
  4. Behnke, H.-D., 1988: Sieve-element plastids, phloem protein, and evolution of flowering plants: III.Magnoliidae. — Taxon37: 699–732.Google Scholar
  5. Burger, W. C., 1981: Heresy revived: the monocot theory of angiosperm origin. — Evol. Theory5: 189–225.Google Scholar
  6. Carlquist, S., 1987: Presence of vessels in wood ofSarcandra (Chloranthaceae): comments on vessel origins in angiosperms. — Amer. J. Bot.74: 1765–1771.Google Scholar
  7. Conover, M., 1983: The vegetative morphology of the reticulate-veinedLiliiflorae. — Telopea2: 401–442.Google Scholar
  8. Cornet, B., 1986: The reproductive structures and leaf venation of a Late Triassic angiosperm,Sanmiguelia lewisii. — Evol. Theory7: 231–309.Google Scholar
  9. , 1989a: Late Triassic angiosperm-like pollen from the Richmond Rift Basin of Virginia, U.S.A. — Palaeonotgraphica Abt.B 213: 37–87.Google Scholar
  10. , 1989b: The reproductive morphology and biology ofSanmiguelia lewisii, and its bearing on angiosperm evolution in the Late Triassic. — Evol. Trends Pl.3: 25–51.Google Scholar
  11. Crane, P. R., 1985: Phylogenetic analysis of seed plants and the origin of angiosperms. — Ann. Missouri Bot. Gard.72: 716–793.Google Scholar
  12. , 1988: Major clades and relationships in the “higher” gymnosperms. — InBeck, C. B., (Ed.): Origin and evolution of gymnosperms, pp. 218–272. — New York: Columbia University Press.Google Scholar
  13. ,Upchurch, G. R., Jr., 1987:Drewria potomacensis gen. et sp. nov., an early Cretaceous member ofGnetales from the Potomac Group of Virginia. — Amer. J. Bot74: 1722–1736.Google Scholar
  14. Cronquist, A., 1981: An integrated system of classification of the angiosperms. — New York: Columbia University Press.Google Scholar
  15. , 1988: The evolution and classification of flowering plants, 2nd edn. — Bronx, New York: The New York Botanical Garden.Google Scholar
  16. Dahlgren, R. M. T., Clifford, H. T., Yeo, P. F., 1985: The families of monocotyledons. — Berlin: Springer.Google Scholar
  17. Davis, G. L., 1966: Embryology of the angiosperms. — New York: Wiley.Google Scholar
  18. Donoghue, M. J., Doyle, J. A., 1989: Phylogenetic analysis of angiosperms and the relationships ofHamamelidae. — InCrane, P. R., Blackmore, S., (Eds.): Evolution, systematics, and fossil history of theHamamelidae, pp. 17–45. — Oxford: Clarendon Press.Google Scholar
  19. Doyle, J. A., Donoghue, M. J., 1986: Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. — Bot. Rev.52: 321–431.Google Scholar
  20. , 1976: Pollen and leaves from the mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution. — InBeck, C. B., (Ed.): Origin and early evolution of angiosperms, pp. 139–206. — New York: Columbia University Press.Google Scholar
  21. Ehrendorfer, F., 1976: Evolutionary significance of chromosomal differentiation patterns in gymnosperms and primitive angiosperms. — InBeck, C. B., (Ed.): Origin and early evolution of angiosperms, pp. 220–240. — New York: Columbia University Press.Google Scholar
  22. Ehrendorfer, F., 1986: Chromosomal differentiation and evolution in angiosperm groups. — InIwastsuki, K., Raven, P. H., Bock, W. J., (Eds.): Modern aspects of species, pp. 59–86. — Tokyo: University of Tokyo Press.Google Scholar
  23. Erdtman, G., 1969: Handbook of palynology. — Copenhagen: Munksgaard.Google Scholar
  24. Foster, A. S., 1972: Venation patterns in the leaves ofEphedra. — J. Arnold Arbor.53: 364–385.Google Scholar
  25. Friedman, W. E., 1990: Double fertilization inEphedra, a nonflowering seed plant: its bearing on the origin of angiosperms. — Science247: 951–954.Google Scholar
  26. Friis, E. M., Crane, P. R., Pedersen, K. P., 1988: Floral evidence for Cretaceous chloranthoid angiosperms. — Nature320: 163–164.Google Scholar
  27. Gifford, E. M., Foster, A. S., 1989: Morphology and evolution of vascular plants. 3rd edn. — New York: Freeman.Google Scholar
  28. Gregory, M., Baas, P., 1989: Review. A survey of mucilage cells in vegetative organs of the dicotyledons. — Israel J. Bot.38: 125–174.Google Scholar
  29. Hamby, R. K., Zimmer, E. A., 1990: Ribosomal RNA as a phylogenetic tool in plant systematics. — InSoltis, D. E., Soltis, P., Doyle, J. J., (Eds.): Plant molecular systematics. — Routledge: Chapman and Hall.Google Scholar
  30. Harris, T. M., 1964: The Yorkshire Jurassic flora. II.Caytoniales, Cycadales, andPteridosperms. — London: British Museum (Natural History).Google Scholar
  31. , 1969: The Yorkshire Jurassic flora. III.Bennettitales. — London: British Museum (Natural History).Google Scholar
  32. , 1971: The stem ofCaytonia. — Geophytology1: 23–29.Google Scholar
  33. Hickey, L. J., Doyle, J. A., 1977: Early Cretaceous fossil evidence for angiosperm evolution. — Bot. Rev.43: 3–104.Google Scholar
  34. , 1989: Reexamination of leaf architectural characters of basal angiosperms and their sister-groups: implications for the origin and relationships of angiosperms. — Amer. J. Bot.76: 245.Google Scholar
  35. , 1991: The leaf architecture ofTicodendron and the application of foliar characters in discerning its relationships. — Ann. Missouri Bot. Gard.78: 105–130.Google Scholar
  36. , 1975: The bases of angiosperm phylogeny: vegetative morphology. — Ann. Missouri Bot. Gard.62: 538–589.Google Scholar
  37. Jain, R. K., Delevoryas, T., 1967: A middle Triassic flora from the Cacheuta Formation, Minas de Petroleo, Argentina. — Palaeontology10: 564–589.Google Scholar
  38. Kaplan, D. R., 1973: The monocotyledons: their evolution and comparative biology. VII. The problem of leaf morphology and evolution in the monocotyledons. — Quart. Rev. Biol.48: 437–457.Google Scholar
  39. Kondo, K., Na, H., Gu, Z., Fan, Q., Xia, L., 1987: A karyomorphological study in four species ofAsarum from Yunnan, China. — Kromosomo2: 1495–1501.Google Scholar
  40. Levin, G., 1986: Systematic foliar morphology ofPhyllanthoideae (Euphorbiaceae). III. Cladistic analysis. — Syst. Bot.11: 515–530.Google Scholar
  41. Lidgard, S., Crane, P. R., 1990: Angiosperm diversification and Cretaceous floristic trends: a comparison of palynofloras and leaf macrofloras. — Paleobiology16: 77–93.Google Scholar
  42. Loconte, H., Estes, J. R., 1989; Phylogenetic systematics ofBerberidaceae andRanunculales (Magnoliidae). — Syst. Bot.14: 565–579.Google Scholar
  43. , 1990: Cladistics of theSpermatophyta. — Brittonia42: 197–211.Google Scholar
  44. Maddison, W. P., Donoghue, M. J., Maddison, P. R., 1984: Outgroup analysis and parsimony. — Syst. Zool.33: 83–103.Google Scholar
  45. Maheshwari, H. K., 1972: Permian wood from Antarctica and revision of some Lower Gondwana wood taxa. — Palaeontographica Abt. B138: 1–43.Google Scholar
  46. Maheshwari, P., Vasil, V., 1961:Gnetum. — New Dehli: Council of Scientific and Industrial Research.Google Scholar
  47. Martens, P., 1971: Les Gnetophytes. — Berlin: Gebrüder Borntraeger.Google Scholar
  48. Meeuse, A. D. J., 1987: All about angiosperms. — Delft: Edburon.Google Scholar
  49. Metcalfe, C. R., 1987: Anatomy of the dicotyledons. 2nd edn. — Oxford: Clarendon Press.Google Scholar
  50. , 1950: Anatomy of the dicotyledons. — Oxford: Clarendon Press.Google Scholar
  51. Miller, C. N., Jr., 1988: The origin of modern conifer families. — InBeck, C. B., (Ed.): Origin and evolution of gymnosperms, pp. 448–486. — New York: Columbia University Press.Google Scholar
  52. Pant, D. D., Singh, R. S., 1974: On the stem and attachment ofGlossopteris andGangamopteris leaves. Part II. Structural features. — Palaeontographica Abt. B147: 42–73.Google Scholar
  53. Pearson, H. H. W., 1929:Gnetales. — Cambridge: Cambridge University Press.Google Scholar
  54. Pigg, K. B., 1990a: Anatomically preservedGlossopteris foliage from the central Transantarctic Mountains. — Rev. Palaeobot. Palynol.66: 105–127.Google Scholar
  55. , 1990b: Anatomically preservedDicroidium foliage from the central Transantarctic Mountains. — Rev. Palaeobot. Palynol.66: 129–145.Google Scholar
  56. , 1990: PermineralizedGlossopteris andDicroidium from Antarctica. — InTaylor, T. N., Taylor, E. L., (Eds.): Antarctic paleobiology its role in the reconstruction of Gondwana, pp. 164–172. — New York: Springer.Google Scholar
  57. Poethig, R. S., Sussex, I. M., 1985: The cellular parameters of leaf development in tobacco: a clonal analysis. — Planta165: 170–184.Google Scholar
  58. Poethig, S., 1984: Cellular parameters of leaf morphogenesis in maize and tobacco. — InWhite, R. A., Dickison, W. C., (Eds.): Contemporary problems in plant anatomy, pp. 235–259. — Orlando: Academic Press.Google Scholar
  59. Queiroz, K., De, 1987: Phylogenetic systematics of Iguanine lizards. — Univ. Calif, Publ. Zool.118.Google Scholar
  60. Rao, A. R., 1943: The structure and affinities ofTaeniopteris spatualata McCl. — Proc. Natl. Acad. Sci. India13: 333–355.Google Scholar
  61. Retallack, G. J., Dilcher, D. L., 1988: Reconstructions of selected seed ferns. — Ann. Missouri Bot. Gard.75: 1010–1057.Google Scholar
  62. Rodin, R. J., 1953: Seedling morphology ofWelwitschia. — Amer. J. Bot.40: 371–378.Google Scholar
  63. Sahni, B., 1948: ThePentoxyleae: A new group of Jurassic gymnosperms from the Rajmahal Hills of India. — Bot. Gaz.110: 47–80.Google Scholar
  64. Srivastava, B. P., 1945: Silicified plant remains from the Rajmahal series of India. — Proc. Natl. Acad. Sci. India15 B: 190–211.Google Scholar
  65. Stebbins, G. L., 1974: Flowering plants: evolution above the species level. — Cambridge, MA: The Belknap Press of Harvard University Press.Google Scholar
  66. Steeves, M. W., Barghoorn, E. S., 1959: The pollen ofEphedra. — J. Arnold Arbor.40: 221–259.Google Scholar
  67. Stewart, W. N., 1983: Plaeobotany and the evolution of plants. — Cambridge: Cambridge University Press.Google Scholar
  68. Sussex, I. M., Taylor, D. W., 1989: The origin and evolution of leaves. — Current Topics Pl. Biochem. Physiol.118: 161–167.Google Scholar
  69. Swofford, D. L., 1985: PAUP Version 2.4. — Champaign, IL: Illinois Natural History Survey.Google Scholar
  70. Takhtajan, A. L., 1980: Outline of the classification of flowering plants (Magnoliophyta). — Bot. Rev.46: 225–359.Google Scholar
  71. Taylor, D. W., 1991: Angiosperm ovules and carpels: their characters and polarities, distribution in basal clades and structural evolution. — Postilla208: 1–40.Google Scholar
  72. , 1990: An Aptian plant with attached leaves and flowers: implications for angiosperm origin. — Science247: 702–704.Google Scholar
  73. Taylor, T. N., 1973: A consideration of the morphology, ultrastructure, and multicellular microgametophyte ofCycadeoidea dacotensis pollen. — Rev. Palaeobot. Palynol.16: 157–164.Google Scholar
  74. , 1987: The ultrastructure of fossil gymnosperm pollen. — Bull. Soc. Bot. France134: 121–140.Google Scholar
  75. , 1984: The ultrastructure of Mesozoic pollen:Pteruchus dubius (Thomas)Townrow. — Rev. Palaeobot. Palynol.41: 319–327.Google Scholar
  76. Townrow, J. A., 1965: A new member of theCorystospermaceae Thomas. — Ann. Bot.29: 495–511.Google Scholar
  77. Walker, J. W., 1976: Comparative pollen morphology and phylogeny of the ranalean complex. — InBeck, C. B., (Ed.): Origin and early evolution of angiosperms, pp. 241–299. — New York: Columbia University Press.Google Scholar
  78. West, W. C., 1969: Ontogeny of oil cells in the woodyRanales. — Bull. Torrey Bot. Club96: 329–344.Google Scholar
  79. Wieland, G. R., 1906: American fossil cycads. — Washington, DC: Carnegie Institution of Washington.Google Scholar
  80. Zavada, M. S., Crepet, W. L., 1986: Pollen grain wall structure ofCaytonanthus arberi (Caytoniales). — Pl. Syst. Evol.153: 259–264.Google Scholar
  81. Zimmer, E. A., Hamby, R. K., Arnold, M. L., Leblanc, D. A., Theriot, E. C., 1989: Ribosomal RNA phylogenies and flowering plant evolution. — InFernholm, B., Bremer, K., Jornvall, H., (Eds.): The hierarchy of life: molecules and morphology in phylogenetic analysis, pp. 205–214. — Amsterdam: Elsevier.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • David Winship Taylor
    • 1
  • Leo J. Hickey
    • 2
  1. 1.Department of Biology, Peabody MuseumYale UniversityNew HavenUSA
  2. 2.Department of Geology and GeophysicsYale UniversityNew HavenUSA

Personalised recommendations