Advertisement

Solvability, controllability, and observability of singular systems

  • M. A. Christodoulou
  • P. N. Paraskevopoulos
Contributed Papers

Abstract

The problems of solvability, controllability, and observability for the singular systemKx(t)=Ax(t)+Bu(t) are studied, whereK is a singular, square matrix andu(t) is a complex vector function sufficiently differentiable. The classical theories of matrix pencils are first related to the solvability of singular systems. Then, the concepts of reachability, controllability, and observability of regular systems are extended to singular systems. Finally, the set of reachable states is described. The proposed matrix conditions for testing the controllability and observability of singular systems are simple and always feasible.

Key Words

Control theory controllability observability singular systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wilkinson, J. H.,Linear Differential Equations and Kronecker's Canonical Form, Recent Advances in Numerical Analysis, Edited by C. De Boor and G. H. Golub, Academic Press, New York, New York, 1978.Google Scholar
  2. 2.
    Luenberger, D. G.,Time-Invariant Descriptor Systems, Automatica, Vol. 14 pp. 473–480, 1978.Google Scholar
  3. 3.
    Verghese, G. C., Lévy, B. C., andKailath, T.,A Generalized State Space for Singular Systems, IEEE Transactions on Automatic Control, Vol. AC-26, pp. 811–831, 1981.Google Scholar
  4. 4.
    Campbell, S. L., Meyer, C. D., andRose, N. J.,Applications of the Drazin Inverse to Linear Systems of Differential Equations with Singular Constant Coefficients, SIAM Journal on Applied Mathematics, Vol. 31, pp. 411–425, 1976.Google Scholar
  5. 5.
    Campbell, S. L.,Singular Systems of Differential Equations, Pitman, London, England, 1980.Google Scholar
  6. 6.
    Pandolfi, L.,Controllability and Stabilization for Linear Systems of Algebraic and Differential Equations, Journal of Optimization Theory and Applications, Vol. 30, pp. 601–620, 1980.Google Scholar
  7. 7.
    Yip, E. L., andSincovec, R. F.,Solvability, Controllability, and Observability of Continuous Descriptor Systems, IEEE Transactions on Automatic Control, Vol. AC-26, pp. 702–707, 1981.Google Scholar
  8. 8.
    Sincovec, R. F., Erisman, A. M., Yip, E. L., andEpton, M. A.,Analysis of Descriptor Systems Using Numerical Algorithms, IEEE Transactions on Automatic Control, Vol. AC-26, pp. 139–147, 1981.Google Scholar
  9. 9.
    Paige, C. C.,Controllability of General Discrete Linear Invariant Systems (to appear).Google Scholar
  10. 10.
    Cline, T. B., Luenberger, D. G., andStengel, D. N.,Descriptor Variable Representation of Large-Scale Deterministic Systems, Department of Energy, Contract No. EX-76-C-0102090, Technical Memorandum No. 5186-6, 1977.Google Scholar
  11. 11.
    Verghese, G., andKailath, T.,Impulsive Behavior in Dynamical Systems, Structure and Significance, Proceedings, 4th International Symposium of Mathematical Theory for Networks and Systems, Delft, Holland, 1979.Google Scholar
  12. 12.
    Verghese, G., Van Dooren, P., andKailath, T.,Properties of the System Matrices of a Generalized State-Space System, International Journal of Control, Vol. 30, pp. 235–243, 1979.Google Scholar
  13. 13.
    Rosenbrock, H. H., andPuch, A. C.,Contributions to a Hierarchical Theory of Systems, International Journal of Control, Vol. 19, pp. 845–867, 1974.Google Scholar
  14. 14.
    Newcomb, R.,The Semistate Description of Nonlinear Time-Variable Circuits, IEEE Transactions on Circuits and Systems, Vol. CAS-28, pp. 62–71, 1981.Google Scholar
  15. 15.
    Luenberger, D. G.,Dynamic Equations in Descriptor Form, IEEE Transactions on Automatic Control, Vol. AC-22, pp. 312–321, 1977.Google Scholar
  16. 16.
    Rosenbrock, H. H.,Structural Properties of Linear Dynamical Systems, International Journal of Control, Vol. 20, pp. 191–202, 1974.Google Scholar
  17. 17.
    Rosenbrock, H. H.,Order, Degree, and Complexity, International Journal of Control, Vol. 19, pp. 323–331, 1974.Google Scholar
  18. 18.
    Puch, A. C.,The McMillan Degree of a Polynomial System Matrix, International Journal of Control, Vol. 24, pp. 129–135, 1976.Google Scholar
  19. 19.
    Bernhard, P.,On Singular Implicit Linear Dynamical Systems, SIAM Journal on Control and Optimization, Vol. 20, pp. 612–633, 1982.Google Scholar
  20. 20.
    Paraskevopoulos, P. N., Christodoulou, M. A., andTsakiris, M. A.,Eigenvalue-Eigenvector Sensitivity of Linear Time-Invariant Singular Systems, IEEE Transactions on Automatic Control, Vol. AC-29, pp. 344–346, 1984.Google Scholar
  21. 21.
    Paraskevopoulos, P. N., Christodoulou, M. A., andTsakiris, M. A.,Transfer Function Sensitivity analysis of Singular Systems, Proceedings of the MELECON-83 Conference, Athens, Greece, 1983.Google Scholar
  22. 22.
    Paraskevopoulos, P. N.,Eigenvalue Assignment in Singular Systems, Proceedings of the MELECON-83 Conference, Athens, Greece, 1983.Google Scholar
  23. 23.
    Favini, A.,Controllability Conditions of Linear Degenerate Evolution Systems, Applied Mathematics and Optimization, Vol. 6, pp. 153–167, 1980.Google Scholar
  24. 24.
    Wonham, W. M.,Linear Multivariable Control: A Geometric Approach, Springer-Verlag, Berlin, Germany, 1974.Google Scholar
  25. 25.
    Gantmacher, F. R.,The Theory of Matrices, Vol. 2, Chelsea, New York, New York, 1974.Google Scholar
  26. 26.
    Dahlquist, G., andBjorck, A.,Numerical Methods, Prentice-Hall, Englewood Cliffs, New Jersey, 1974.Google Scholar
  27. 27.
    Rosenbrock, H. H.,State Space and Multivariate Theory, Wiley, New York, New York, 1970.Google Scholar
  28. 28.
    Drazin, M. P.,Pseudoinverses in Associative Rings and Semigroups, American Mathematical Monthly, Vol. 65, pp. 506–514, 1958.Google Scholar
  29. 29.
    Greville, T. N. E.,The Souriau-Frame Algorith mand the Drazin Pseudoinverse, Linear Algebra and Applications, Vol. 6, pp. 205–208, 1973.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • M. A. Christodoulou
    • 1
  • P. N. Paraskevopoulos
    • 1
  1. 1.Department of Electrical Engineering, School of EngineeringDemocritus University of ThraceXanthiGreece

Personalised recommendations