Advertisement

Approximation of relaxed nonlinear parabolic optimal control problems

  • I. Chryssoverghi
  • A. Bacopoulos
Contributed Papers

Abstract

We consider a relaxed optimal control problem for systems defined by nonlinear parabolic partial differential equations with distributed control. The problem is completely discretized by using a finite-element approximation scheme with piecewise linear states and piecewise constant controls. Existence of optimal controls and necessary conditions for optimality are derived for both the continuous and the discrete problem. We then prove that accumulation points of sequences of discrete optimal [resp. extremal] controls are optimal [resp. extremal] for the continuous problem.

Key Words

Optimal control nonlinear parabolic systems discretization approximation relaxed controls distributed systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Young, L. C.,Generalized Curves and the Existence of an Attained Absolute Minimum in the Calculus of Variations, Comptes Rendus de Sciences et Lettres de Varsovie, Vol. 103, pp. 212–234, 1937.Google Scholar
  2. 2.
    McShane, E. J.,Generalized Curves, Duke Mathematical Journal, Vol. 6, pp. 513–536, 1940.Google Scholar
  3. 3.
    Filippov, A. E.,On Certain Questions in the Theory of Optimal Control, SIAM Journal on Control, Vol. 1, pp. 76–84, 1962.Google Scholar
  4. 4.
    Gamkrelidze, R. V.,On Some Extremal Problems in the Theory of Differential Equations with Applications to the Theory of Optimal Control, SIAM Journal on Control, Vol. 3, pp. 106–128, 1965.Google Scholar
  5. 5.
    Ghouila-Houri, A., Sur la Généralisation de la Notion de Commande d'un Systeme Guidable, Revue Française d'Informatique et de Recherche Operationelle, Vol. 4, pp. 7–32, 1967.Google Scholar
  6. 6.
    Warga, J.,Optical Control of Differential and Functional Equations, Academic Press, New York, New York, 1972.Google Scholar
  7. 7.
    Cesari, L.,Existence Theorems for Weak and Usual Optimal Solutions in Lagrange Problems with Unilateral Constraints, Parts 1 and 2, Transactions of the American Mathematical Society, Vol. 124, pp. 369–430, 1966.Google Scholar
  8. 8.
    Ekeland, I., Sur le Contrôle Optimal de Systèmes Gouvernés par des Equations Elliptiques, Journal of Functional Analysis, Vol. 9, pp. 1–62, 1972.Google Scholar
  9. 9.
    Teo, K. L., andGoh, C. J.,A Computational Method for a Class of Optimal Relaxed Control Problems, Journal of Optimization Theory and Applications, Vol. 60, No. 1, pp. 117–133, 1989.Google Scholar
  10. 10.
    Mayne, D. Q., andPolak, E.,An Exact Penalty Function Algorithm for Optimal Control Problems with Control and Terminal Equality Constraints, Parts 1 and 2, Journal of Optimization Theory and Applications, Vol. 32, pp. 211–246, 1980 and Vol. 32, pp. 345–364, 1980.Google Scholar
  11. 11.
    Williamson, L. J., andPolak, E.,Relaxed Controls and the Convergence of Algorithms, SIAM Journal on Control and Optimization, Vol. 14, pp. 737–756, 1976.Google Scholar
  12. 12.
    Warga, J.,Steepest Descent with Relaxed Controls, SIAM Journal on Control and Optimization, Vol. 15, pp. 674–682, 1977.Google Scholar
  13. 13.
    Chryssoverghi, I.,Numerical Approximation of Nonconvex Optimal Control Problems Defined by Parabolic Equations, Journal of Optimization Theory and Applications, Vol. 45, pp. 73–88, 1985.Google Scholar
  14. 14.
    Chrryssoverghi, I., andBacopoulos, A.,Discrete Approximation of Relaxed Optimal Control Problems, Journal of Optimization Theory and Applications, Vol. 65, pp. 395–407, 1990.Google Scholar
  15. 15.
    Chryssoverghi, I.,Nonconvex Optimal Control of Nonlinear Monotone Parabolic Systems, Systems and Control Letters, Vol. 8, pp. 55–62, 1986.Google Scholar
  16. 16.
    Temam, R.,Navier-Stokes Equations, North-Holland, New York, New York, 1977.Google Scholar
  17. 17.
    Lees, M.,A Priori Estimates for the Solutions of Difference Approximations to Parabolic Differential Equations, Duke Mathematical Journal, Vol. 27, pp. 287–311, 1960.Google Scholar
  18. 18.
    Cullum, J.,An Explicit Procedure for Discretizing Continuous Optimal Control Problems, Journal of Optimization Theory and Applications, Vol. 8, pp. 14–34, 1971.Google Scholar
  19. 19.
    Rao, K. C., Prabhu, S. S., andMehta, S. C.,Optimal Control of Nonlinear Distributed-Parameter Systems by Finite-Element Collocation Technique, Optimal Control Applications and Methods, Vol. 3, pp. 79–90, 1982.Google Scholar
  20. 20.
    Teo, K. L., andWu, Z. S.,Computational Methods for Optimizing Distributed Systems, Academic Press, New York, New York, 1984.Google Scholar
  21. 21.
    Banks, H. T., Crowley, J. M., andKunisch, K.,Cubic Spline Approximation Techniques for Parameter Estimation in Distributed Systems, IEEE Transactions on Automatic Control, Vol. 28, pp. 773–786, 1983.Google Scholar
  22. 22.
    Lamm, P. K.,Estimation of Discontinuous Coefficients in Parabolic Systems: Applications to Reservoir Simulation, SIAM Journal on Control and Optimization, Vol. 25, pp. 18–37, 1987.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • I. Chryssoverghi
    • 1
  • A. Bacopoulos
    • 1
  1. 1.Department of MathematicsNational Technical UniversityAthensGreece

Personalised recommendations