Perfect equilibria in stochastic games

  • F. Thuijsman
  • S. H. Tijs
  • O. J. Vrieze
Contributed Papers


We examine stochastic games with finite state and action spaces. For the β-discounted case, as well as for the irreducible limiting average case, we show the existence of trembling-hand perfect equilibria and give characterizations of those equilibria. In the final section, we give an example which illustrates that the existence of stationary limiting average equilibria in a nonirreducible stochastic game does not imply the existence of a perfect limiting average equilibrium.

Key Words

Stochastic games equilibria trembling-hand perfect equilibria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nash, J. F.,Equilibrium in a Stochastic n-Person Game, Proceedings of the National Academy of Sciences USA, Vol. 36, pp. 48–49, 1950.Google Scholar
  2. 2.
    Selten, R.,Reexamination of the Perfectness Concept for Equilibrium Points in Extensive Games, International Journal of Game Theory, Vol. 4, pp. 25–55, 1975.Google Scholar
  3. 3.
    Kemeny, J. G., andSnell, J. L.,Finite Markov Chains, Van Nostrand, Princeton, New Jersey, 1961.Google Scholar
  4. 4.
    Shapley, L. S.,Stochastic Games, Proceedings of the National Academy of Sciences USA, Vol. 39, pp. 1095–1100, 1953.Google Scholar
  5. 5.
    Blackwell, D.,Discrete Dynamic Programming, Annals of Mathematical Statistics, Vol. 33, pp. 719–726, 1962.Google Scholar
  6. 6.
    Fink, A. M.,Equilibrium in a Stochastic n-Person Game, Journal of Science of Hiroshima University, Series A-I 28, pp. 89–93, 1964.Google Scholar
  7. 7.
    Rogers, P. D.,Nonzero-Sum Stochastic Games, PhD Thesis and Report No. ORC-69-8, University of California, Berkeley, 1969.Google Scholar
  8. 8.
    Vrieze, O. J., andThuijsman, F.,On Equilibria in Repeated Games with Absorbing States, International Journal of Game Theory, Vol. 18, pp. 293–310, 1989.Google Scholar
  9. 9.
    Thuijsman, F.,Optimality and Equilibria in Stochastic Games, PhD Thesis, University of Limburg, Maastricht, The Netherlands, 1989.Google Scholar
  10. 10.
    Tijs, S. H.,Noncooperative Game Theory, Lecture Notes, Catholic University, Nijmegen, The Netherlands, 1987.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • F. Thuijsman
    • 1
  • S. H. Tijs
    • 2
  • O. J. Vrieze
    • 1
  1. 1.Department of Mathematics, Faculty of General SciencesUniversity of LimburgMaastrichtThe Netherlands
  2. 2.Department of MathematicsCatholic UniversityNijmegenThe Netherlands

Personalised recommendations