Advertisement

Method for minimizing a convex-concave function over a convex set

  • L. D. Muu
  • W. Oettli
Contributed Papers

Abstract

A branch-and-bound method is proposed for minimizing a convex-concave function over a convex set. The minimization of a DC-function is a special case, where the subproblems connected with the bounding operation can be solved effectively.

Key Words

Global optimization branch-and-bound methods convex-concave functions DC-problems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Muu, L. D., andOettli, W.,An Algorithm for Indefinite Quadratic. Programming with Convex Constraints, Operations Research Letters, Vol. 10, 1991 (in press).Google Scholar
  2. 2.
    Hiriart-Urruty, J.-B.,Generalized Differentiability, Duality, and Optimization for Problems Dealing with Differences of Convex Functions, Convexity and Duality in Optimization, Edited by J. Ponstein, Springer-Verlag, Berlin, Germany, pp. 37–69, 1986.Google Scholar
  3. 3.
    Tuy, H.,Global Minimization of a Difference of Two Convex Functions, Mathematical Programming Study, Vol. 30, pp. 150–182, 1987.Google Scholar
  4. 4.
    Pardalos, P. M., andRosen, J. B.,Constrained Global Optimization: Algorithms and Applications, Springer-Verlag, Berlin, Germany, 1987.Google Scholar
  5. 5.
    Rosen, J. B., andPardalos, P. M.,Global Minimization of Large-Scale Constrained Concave Quadratic Problems by Separable Programming, Mathematical Programming, Vol. 34, pp. 163–174, 1986.Google Scholar
  6. 6.
    Benson, H. P.,On the Convergence of Two Branch-and-Bound Algorithms for Nonconvex Programming Problems, Journal of Optimization Theory and Applications, Vol. 36, pp. 129–134, 1982.Google Scholar
  7. 7.
    Horst, R.,Deterministic Global Optimization with Partition Sets Whose Feasibility is Not Known: Application to Concave Minimization, Reverse Convex Constraints, DC-Programming, and Lipschitzian Optimization, Journal of Optimization Theory and Applications, Vol. 58, pp. 11–37, 1988.Google Scholar
  8. 8.
    Horst, R., andTuy, H.,On the Convergence of Global Methods in Multiextremal Optimization, Journal of Optimization Theory and Applications, Vol. 54, pp. 253–271, 1987.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • L. D. Muu
    • 1
  • W. Oettli
    • 2
  1. 1.Institute of MathematicsHanoiVietnam
  2. 2.Fakultät für Mathematik und InformatikUniversität MannheimMannheimGermany

Personalised recommendations