Advertisement

Optimal rigid body motions, part 2: Minimum time solutions

  • R. S. Chowdhry
  • E. M. Cliff
Contributed Papers

Abstract

The time-optimal control of rigid-body angular rates is investigated in the absence of direct control over one of the angular velocity components. The existence of singular subarcs in the time-optimal trajectories is explored. A numerical survey of the optimality conditions reveals that, over a large range of boundary conditions, there are in general several distinct extremal solutions. A classification of extremal solutions is presented, and domains of existence of the extremal subfamilies are established in a reduced parameter space. A locus of Darboux points is obtained, and global optimality of the extremal solutions is observed in relation to the Darboux points. The continuous dependence of the optimal trajectories with respect to variations in control constraints is noted, and a procedure to obtain the time-optimal bang-bang solutions is presented.

Key Words

Optimal rigid body rotational maneuvers singular subarcs multiple extremal solutions Darboux locus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chowdhry, R. S., Ben-Asher, J. Z., andCliff, E. M.,Optimal Rigid Body Motions, Part 1: Approximate Formulation, Journal of Optimization Theory and Applications, Vol. 70, pp. 57–78, 1991.Google Scholar
  2. 2.
    Goldstein, H.,Classical Mechanics, Addison-Wesley, Reading, Massachusetts, 1980.Google Scholar
  3. 3.
    Goh, B. S.,Necessary Conditions for Singular Extremals Involving Multiple Control Variables, SIAM Journal on Control, Vol. 4, pp. 716–731, 1966.Google Scholar
  4. 4.
    Stoer, J., andBulirsch, R.,Introduction to Numerical Analysis, Springer-Verlag, New York, New York, 1980.Google Scholar
  5. 5.
    Mereau, P., andPowers, W. F.,The Darboux Point, Journal of Optimization Theory and Applications, Vol. 17, pp. 545–559, 1975.Google Scholar
  6. 6.
    Moyer, H. G., andKelley, H. J.,Conjugate Points on Extremal Rocket Paths, Paper No. AD-145, 19th Congress of the International Astronautical Federation, New York, New York, 1968.Google Scholar
  7. 7.
    Cliff, E. M., Kelley, H. J., andLefton, L.,Thrust-Vectored Energy Turns, Automatica, Vol. 18, pp. 559–564, 1982.Google Scholar
  8. 8.
    Krasovskii, N. N.,On the Theory of Optimal Control, Prikladnaia Matermatika i Mekhanika, Vol. 23, pp. 625–639, 1959 (in Russian).Google Scholar
  9. 9.
    Artstein, Z.,The Maximum Amplitude Cost Functional in Linear Systems, Journal of Mathematical Analysis and Applications, Vol. 50, pp. 341–349, 1975.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • R. S. Chowdhry
    • 1
  • E. M. Cliff
    • 1
  1. 1.Aerospace EngineeringVirginia Polytechnic Institute and State UniversityBlacksburg

Personalised recommendations