Skip to main content
Log in

Molecular divergence in the Galapagos Islands—Baja California species pair,Gossypium klotzschianum andG. davidsonii (Malvaceae)

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Molecular divergence betweenGossypium klotzschianum andG. davidsonii was studied. The former is endemic to five of the larger islands of the Galapagos, whileG. davidsonii is restricted to the southern half of Baja California, approximately 2 500 km distant. A substantial body of genetic and taxonomic data suggests that these two species are related as progenitor and derivative. Interspecific hybrids are fully fertile, with no evidence of F2 breakdown and normal segregation of genetic markers. Allozyme analysis of 33 populations for 41 loci indicated that the allelic composition ofG. klotzschianum represents a subset ofG. davidsonii. Although genetic diversity is relatively restricted in both species, calculated measures demonstrate higher levels of genetic variability and greater population structuring inG. davidsonii than inG. klotzschianum. The interspecific genetic identity of 0.87 is typical for progenitor-derivative species pairs. Chloroplast DNAs were surveyed for variation with 25 restriction enzymes using hybridization probes that cover the entire chloroplast genome. No intraspecific and little interspecific variation was detected among 560 cpDNA restriction sites, representing sequence information for approximately 3200 nucleotides. Only 3 mutational differences distinguished the two species, resulting in a sequence divergence estimate of 0.09%. Divergence times were estimated from both the isozyme data and the cpDNA restriction site data. Although these estimates have several sources of error, both molecular data sets were congruent in suggesting that the two lineages diverged between 250000 and 700000 years ago. Accumulated evidence suggests that dispersal was from Baja California to the Galapagos Islands rather than the reverse, and most likely was mediated by trans-oceanic drift.G. klotzschianum may be the only species of the endemic Galapagos flora to have arisen from a northern Mexican progenitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Clayton, J. W., Tretiak, D. N., 1972: Amine-citrate buffers for pH control in starch gel electrophoresis. — J. Fish. Res. Board Canada29: 1169–1172.

    Google Scholar 

  • Cox, A., 1983: Ages of the Galapagos Islands. — InBowman, R. I., Berson, M., Leviton, A. E., (Eds.): Patterns of evolution in Galapagos organisms, pp. 11–23. — San Francisco: Amer. Ass. Adv. Science.

    Google Scholar 

  • Crawford, D. J., 1983: Phylogenetic and systematic inferences from electrophoretic studies. — InTanksley, S. D., Orton, T. J., (Eds.): Isozymes in plant genetics and breeding, A, pp. 257–287. — Amsterdam: Elsevier.

    Google Scholar 

  • , 1985: Electrophoretic data and plant speciation. — Syst. Bot.10: 405–416.

    Google Scholar 

  • , 1982: Allozyme variation inCoreopsis nuecensoides andC. nuecensis (Compositae), a progenitor-derivative species pair. — Evolution36: 379–386.

    Google Scholar 

  • , 1987: Allozyme divergence and the evolution ofDendroseris (Compositae: Lactuceae) on the Juan Fernandez Islands. — Syst. Bot.12: 435–443.

    Google Scholar 

  • , 1985: Allozyme variation within and betweenLasthenia minor and its derivative species,L. maritima (Asteraceae). — Amer. J. Bot.72: 1177–1184.

    Google Scholar 

  • Doebley, J., Renfroe, W., Blanton, A., 1987: Restriction site variation in theZea chloroplast genome. — Genetics117: 139–147.

    Google Scholar 

  • Doyle, J. J., Doyle, J. L., 1987: A rapid DNA isolation procedure for small quantities of fresh leaf tissue. — Phytochem. Bull.19: 11–15.

    Google Scholar 

  • Feinberg, A. P., Vogelstein, B., 1983: A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. — Anal. Biochem.132: 6–13.

    Google Scholar 

  • , 1984: Addendum: “a technique for radiolabelling DNA restriction endonuclease fragments to high specific activity”. — Anal. Biochem.137: 266–267.

    Google Scholar 

  • Fryxell, P. A., 1979: The natural history of the cotton tribe. — College Station: Texas A & M University Press.

    Google Scholar 

  • , 1987: New or noteworthy species of flowering plants from the Sierra Madre del Sur of Guerrero and Michoacan, Mexico. — Aliso11: 539–561.

    Google Scholar 

  • Galau, G. A., Wilkins, T. A., 1989: Alloplasmic male sterility in AD allotetraploidGossypium hirsutum upon replacement of its resident A cytoplasm with that of D speciesG. harknessii. — Theor. Appl. Genet.78: 23–30.

    Google Scholar 

  • Gottlieb, L. D., 1973: Genetic differentiation, sympatric speciation and the origin of a diploid species ofStephanomeria. — Amer. J. Bot.60: 545–553.

    Google Scholar 

  • , 1974: Genetic confirmation of the origin ofClarkia lingulata. — Evolution28: 244–250.

    Google Scholar 

  • , 1981: Electrophoretic evidence and plant populations. — Prog. Phytochem.7: 1–46.

    Google Scholar 

  • , 1985: Morphological and electrophoretic divergence betweenLayia discoidea andL. glandulosa. — Syst. Bot.10: 484–495.

    Google Scholar 

  • Helenurm, K., Ganders, F. R., 1985: Adaptive radiation and genetic differentiation in HawaiianBidens. — Evolution39: 753–765.

    Google Scholar 

  • Hutchinson, J. B., Silow, R. A., Stephens, S. G., 1947: The evolution ofGossypium. — London: Oxford University Press.

    Google Scholar 

  • Ledig, F. T., Conkle, M. T., 1983: Gene diversity and genetic structure in a narrow endemic, torrey pine (Pinus torreyana Parry exCarr.). — Evolution37: 79–85.

    Google Scholar 

  • Lee, J. A., 1981: Genetics of D3 complementary lethality inGossypium hirsutum andG. barbadense. — J. Heredity72: 299–300.

    Google Scholar 

  • , 1986: An early example of a viable hybrid from a cross ofGossypium barbadense L. andG. davidsonii Kell. — J. Heredity77: 56–57.

    Google Scholar 

  • Loveless, M. D., Hamrick, J. L., 1984: Ecological determinants of genetic structure in plant populations. — Ann. Rev. Ecol. Syst.15: 65–95.

    Google Scholar 

  • Lowrey, T., Crawford, D. J., 1985: Allozyme divergence and evolution inTetramolopium (Compositae: Astereae) on the Hawaiian Islands. — Syst. Bot.10: 64–72.

    Google Scholar 

  • Nei, M., 1978: Estimation of average heterozygosity and genetic distance from a small number of individuals. — Genetics89: 583–590.

    Google Scholar 

  • , 1987: Molecular evolutionary genetics. — New York: Columbia University Press.

    Google Scholar 

  • , 1979: Mathematical model for studying genetic variation in terms of restriction endonucleases. — Proc. Natl. Acad. Sci. U.S.A.76: 5269–5273.

    Google Scholar 

  • Palmer, J. D., 1985: Evolution of chloroplast and mitochondrial DNA in plants and algae. — InMacIntyre, R. J., (Ed.): Molecular evolutionary genetics, pp. 131–240. — New York: Plenum Press.

    Google Scholar 

  • , 1987: Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation. — Amer. Naturalist130: S 6-S 29.

    Google Scholar 

  • , 1986: Conservation of chloroplast genome structure among vascular plants. — Curr. Genetic.10: 823–833.

    Google Scholar 

  • , 1982: Chloroplast DNA evolution and phylogenetic relationships inLycopersicon. — Proc. Natl. Acad. Sci. U.S.A.79: 5006–5010.

    Google Scholar 

  • , 1985: Chloroplast DNA variation and evolution inPisum: patterns of change and phylogenetic analysis. — Genetics109: 195–213.

    Google Scholar 

  • Phillips, L. L., 1966: The cytology and phylogenetics of the diploid species ofGossypium. — Amer. J. Bot.53: 328–335.

    Google Scholar 

  • , 1977: Interspecific incompatibility inGossypium. 4. Temperature conditioned lethality in hybrids ofG. klotzschianum. — Amer. J. Bot.64: 914–915.

    Google Scholar 

  • , 1967: Variation in the diploidGossypium species of Baja California. — Madroño19: 137–147.

    Google Scholar 

  • Porter, D. M., 1983: Vascular plants of the Galapagos: origins and dispersal. — InBowman, R. I., Berson, M., Leviton, A. E., (Eds.): Patterns of evolution in Galapagos organisms, pp. 33–96. — San Francisco: Amer. Ass. Adv. Science.

    Google Scholar 

  • , 1984a: Relationships of the Galapagos flora. — Biol. J. Linn. Soc.21: 243–251.

    Google Scholar 

  • , 1984b: Endemism and evolution in terrestrial plants. — InPerry, R., (Ed.): Key environments, Galapagos, pp. 85–99. — Oxford: Pergamon Press.

    Google Scholar 

  • Poulik, M. D., 1957: Starch gel electrophoresis in a discontinuous system of buffers. — Nature180: 1477–1479.

    Google Scholar 

  • Prager, E. M., Fowler, D. P., Wilson, A. C., 1976: Rates of evolution in conifers (Pinaceae). — Evolution30: 637–649.

    Google Scholar 

  • Ranker, T. A., Schnabel, A. F., 1986: Allozymic and morphological evidence for a progenitor-derivative species pair inCamassia (Liliaceae). — Syst. Bot.11: 433–445.

    Google Scholar 

  • Rick, C. M., 1983: Genetic variation and evolution of Galapagos tomatoes. — InBowman, R. I., Berson, M., Leviton, A. E., (Eds.): Patterns of evolution in Galapagos organisms, pp. 97–106. — San Francisco: Amer. Ass. Adv. Science.

    Google Scholar 

  • , 1975: Allozymes of Galapagos tomatoes: polymorphism, geographic distribution, and affinities. — Evolution29: 443–457.

    Google Scholar 

  • Schaffer, H. E., Sederoff, R. R., 1981: Improved estimation of DNA fragment lengths from agarose gels. — Anal. Biochem.115: 113–122.

    Google Scholar 

  • Simkin, T., 1984: Geology of Galapagos. — Biol. J. Linn. Soc.21: 61–75.

    Google Scholar 

  • Stephens, S. G., 1949: The cytogenetics of speciation inGossypium. 1. Selective elimination of the donor parent genotype in interspecific backcrosses. — Genetics34: 627–637.

    Google Scholar 

  • , 1950: The internal mechanism of speciation inGossypium. — Bot. Rev.16: 115–149.

    Google Scholar 

  • , 1958: Salt water tolerance of seeds ofGossypium species as a possible factor in seed dispersal. — Amer. Naturalist92: 83–92.

    Google Scholar 

  • , 1966: Problems on the origin, dispersal, and establishment of the Galapagos cottons. — InBowman, R. I., (Ed.): The Galapagos, pp. 201–208. — Berkeley: University of California Press.

    Google Scholar 

  • Stuessy, T. F., Foland, K. A., Sutter, J. F., Sanders, R. W., Silva, O., 1984: Botanical and geological significance of potassium-argon dates from the Juan Fernandez Islands. — Science225: 49–51.

    Google Scholar 

  • Suiter, K. A., 1988: Genetics of allozyme variation inGossypium arboreum L. andGossypium herbaceum L. (Malvaceae). — Theor. Appl. Genet.75: 259–271.

    Google Scholar 

  • Sytsma, K. J., Gottlieb, L. D., 1986: Chloroplast DNA evolution and phylogenetic relationships inClarkia sect.Peripetasma (Onagraceae). — Evolution40: 1248–1261.

    Google Scholar 

  • Weeden, N. F., Wendel, J. F., 1989: Genetics of plant isozymes. — InSoltis, D. E., Soltis, P. S., (Eds.): Isozymes in plant biology, pp. 46–72. — Portland, Oregon: Dioscorides Press.

    Google Scholar 

  • Wendel, J. F., Weeden, N. F., 1989: Visualization and interpretation of plant isozymes. — InSoltis, D. E., Soltis, P. S., (Eds.): Isozymes in plant biology, pp. 5–45. — Portland, Oregon: Dioscorides press.

    Google Scholar 

  • Zurawski, G., Clegg, M. T., 1987: Evolution of higher-plant chloroplast DNA-encoded genes: implications for structure-function and phylogenetic studies. — Ann. Rev. Pl. Physiol.38: 391–419.

    Google Scholar 

  • , 1984: The nature of nucleotide sequence divergence between barley and maize chloroplast DNA. — Genetics106: 735–749.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wendel, J.F., Percival, A.E. Molecular divergence in the Galapagos Islands—Baja California species pair,Gossypium klotzschianum andG. davidsonii (Malvaceae). Pl Syst Evol 171, 99–115 (1990). https://doi.org/10.1007/BF00940598

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00940598

Key words

Navigation