Journal of Optimization Theory and Applications

, Volume 75, Issue 3, pp 535–558 | Cite as

Role of copositivity in optimality criteria for nonconvex optimization problems

  • G. Danninger
Contributed Papers


Second-order necessary and sufficient conditions for local optimality in constrained optimization problems are discussed. For global optimality, a criterion recently developed by Hiriart-Urruty and Lemarechal is thoroughly examined in the case of concave quadratic problems and reformulated into copositivity conditions.

Key Words

Copositive matrices convex maximization problems concave minimization global optimality conditions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Murty, K. G., andKabadi, S. N.,Some NP-Complete Problems in Quadratic and Linear Programming, Mathematical Programming, Vol. 39, pp. 117–129, 1987.Google Scholar
  2. 2.
    Pardalos, P. M., andSchnitger, G.,Checking Local Optimality in Constrained Quadratic Programming Is NP-Hard, OR Letters, Vol. 7, pp. 33–35, 1988.Google Scholar
  3. 3.
    Bomze, I. M.,Copositivity and Optimization, Proceedings of the 12th SOR Meeting, Athenäum Verlag, Frankfurt, Germany, pp. 27–36, 1989.Google Scholar
  4. 4.
    Hestenes, M. R.,Optimization Theory: The Finite-Dimensional Case, Wiley, New York, New York, 1975.Google Scholar
  5. 5.
    Fletcher, R.,Practical Methods of Optimization, Vol. 2: Constrained Optimization, Wiley, New York, New York, 1981.Google Scholar
  6. 6.
    Bazaraa, M. S., andShetty, C. M.,Nonlinear Programming: Theory and Algorithms, Wiley, New York, New York, 1979.Google Scholar
  7. 7.
    Danninger, G., andBomze, I. M.,Using Copositivity for Local and Global Optimality Criteria in Smooth Nonconvex Programming Problems, Technical Report 103, Department of Statistics and Computer Sciences, University of Vienna, Vienna, Austria, 1991.Google Scholar
  8. 8.
    Mangasarian, O. N., andFromovitz, S.,The Fritz John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints, Journal of Mathematical Analysis and Applications, Vol. 17, pp. 37–47, 1967.Google Scholar
  9. 9.
    Hiriart-Urruty, J. B.,From Convex Optimization to Nonconvex Optimization, Part 1: Necessary and Sufficient Conditions for Global Optimality, Nonsmooth Optimization and Related Topics, Edited by F. H. Clarke et al., Plenum Press, New York, New York, pp. 219–239, 1989.Google Scholar
  10. 10.
    Rockafellar, R. T.,Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.Google Scholar
  11. 11.
    Hiriart-Urruty, J. B., andLemarechal, C.,Testing Necessary and Sufficient Conditions for Global Optimality in the Problem of Maximizing a Convex Quadratic Function over a Convex Polyhedron, Preliminary Report, Seminar of Numerical Analysis, University Paul Sabatier, Toulouse, France, 1990.Google Scholar
  12. 12.
    Wets, R.,Grundlagen Konvexer Optimierung, Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, Berlin, Germany, Vol. 137, 1976.Google Scholar
  13. 13.
    Diananda, P. H.,On Nonnegative Forms in Real Variables Some or All of Which Are Nonnegative, Proceedings of the Cambridge Philosophical Society, Vol. 58, pp. 17–25, 1962.Google Scholar
  14. 14.
    Cottle, R. W., Habetler, G. J., andLemke, C. E.,Quadratic Forms Semidefinite over Convex Cones, Proceedings of the Princeton Symposium in Mathematical Programming, Edited by H. W. Kuhn, Princeton University Press, Princeton, New Jersey, pp. 551–565, 1970.Google Scholar
  15. 15.
    Hadeler, K. P.,On Copositive Matrices, Linear Algebra and Its Applications, Vol. 49, pp. 79–89, 1983.Google Scholar
  16. 16.
    Bomze, I. M.,Remarks on the Recursive Structure of Copositivity, Journal of Information and Optimization Science, Vol. 8, pp. 243–260, 1987.Google Scholar
  17. 17.
    Danninger, G.,A Recursive Algorithm for Determining Strict Copositivity of a Symmetric Matrix, Methods of Operations Research, Vol. 62, pp. 45–52, 1990.Google Scholar
  18. 18.
    Bomze, I. M., andDanninger, G.,A Global Optimization Algorithm for Concave Linear-Quadratic Problems, SIAM Journal on Optimization, 1992 (to appear).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • G. Danninger
    • 1
  1. 1.Department of Statistics and Computer SciencesUniversity of ViennaViennaAustria

Personalised recommendations