Journal of Optimization Theory and Applications

, Volume 59, Issue 3, pp 353–367 | Cite as

An interior semi-infinite programming method

  • M. D. Ašić
  • V. V. Kovačević-Vujčić
Contributed Papers

Abstract

In this paper, a new method for semi-infinite programming problems with convex constraints is presented. The method generates a sequence of feasible points whose cluster points are solutions of the original problem. No maximization over the index set is required. Some computational results are also presented.

Key Words

Semi-infinite programming discretization approximation nonlinear programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Watson, G. A.,Globally Convergent Methods for Semi-Infinite Programming, BIT Nordisk Titskrift for Information Sbehandlung, Vol. 21, pp. 366–373, 1981.Google Scholar
  2. 2.
    Watson, G. A.,Numerical Experiments with Globally Convergent Methods for Semi-Infinite Programming Problems, Semi-Infinite Programming and Applications, Edited by A. V. Fiacco and K. O. Kortanek, Springer-Verlag, Berlin, Germany, pp. 193–205, 1983.Google Scholar
  3. 3.
    Coope, I. O., andWatson, G. A.,A Projected Lagrangian Algorithm for Semi-Infinite Programming, Mathematical Programming, Vol. 32, pp. 337–356, 1985.Google Scholar
  4. 4.
    Polak, E., andTits, A. L.,A Recursive Quadratic Programming Algorithm for Semi-Infinite Optimization Problems, Applied Mathematics and Optimization, Vol. 8, pp. 325–349, 1982.Google Scholar
  5. 5.
    Gustafson, S. A.,A Three-Phase Algorithm for Semi-Infinite Programs, Semi-Infinite Programming and Applications, Edited by A. V. Fiacco and K. O. Kortanek, Springer-Verlag, Berlin, Germany, pp. 138–157, 1983.Google Scholar
  6. 6.
    Hettich, R., andZencke, P.,Numerische Methoden der Approximation und Semi-Infiniten Optimierung, B. G. Teubner, Stuttgart, Germany, 1982.Google Scholar
  7. 7.
    Hettich, R.,A Review of Numerical Methods for Semi-Infinite Optimization, Semi-Infinite Programming and Applications, Edited by A. V. Fiacco and K. O. Kortanek, Springer-Verlag, Berlin, Germany, pp. 158–178, 1983.Google Scholar
  8. 8.
    Jeroslow, R. G.,Some Relaxation Methods for Linear Inequalities, Cahiers du C.E.R.O., Vol. 31, pp. 43–53, 1979.Google Scholar
  9. 9.
    Glashoff, K., andGustafson, S. A.,Linear Optimization and Approximation, Springer-Verlag, New York, New York, 1983.Google Scholar
  10. 10.
    Ašić, M. D., andKovačević-Vujčić, V. V.,Computational Complexity of Some Semi-Infinite Programming Methods, System Modelling and Optimization, Edited by A. Prekopa, J. Szelezsan, and B. Strazicky, Springer-Verlag, Berlin, Germany, pp. 34–42, 1986.Google Scholar
  11. 11.
    Andreassen, D. O., andWatson, G. A.,Linear Chebyshev Approximation without Chebyshev Sets, BIT Nordisk Titskrift for Information Sbehandlung, Vol. 16, pp. 349–362, 1976.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • M. D. Ašić
    • 1
  • V. V. Kovačević-Vujčić
    • 2
  1. 1.Department of Mathematics, Faculty of Natural Sciences and MathematicsBelgrade UniversityBelgradeYugoslavia
  2. 2.Department of Mathematics, Faculty of Organizational SciencesBelgrade UniversityBelgradeYugoslavia

Personalised recommendations