Journal of Optimization Theory and Applications

, Volume 54, Issue 3, pp 447–470 | Cite as

Singular fuel-optimal space trajectories based on linearization about a point in circular orbit

  • T. E. Carter
Contributed Papers


Singular solutions of a linearized problem of determining fuel-optimal trajectories of a spacecraft with bounded thrust near a satellite in circular orbit are investigated in detail. Mathematical results are presented which classify and discuss degeneracy of the singular solutions and which show that strictly singular and nonsingular solutions are mutually exclusive for fixed-end conditions. These results are consistent with those found using other approaches for other linear models, but they are not characteristic of the type of results obtained without linearization.

Key Words

Optimal space trajectories fuel-optimal trajectories singular solutions intermediate thrust arcs optimal rendezvous circular orbit linearization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wheelon, A. D.,Midcourse and Terminal Guidance, Space Technology, Wiley, New York, New York, 1959.Google Scholar
  2. 2.
    Clohessy, W. H., andWiltshire, R. S.,Terminal Guidance System for Satellite Rendezvous, Journal of the Aerospace Sciences, Vol. 27, pp. 653–658 and 674, 1960.Google Scholar
  3. 3.
    Carter, T.,Fuel-Optimal Maneuvers of a Spacecraft Relative to a Point in Circular Orbit, Journal of Guidance, Control, and Dynamics, Vol. 7, pp. 710–716, 1984.Google Scholar
  4. 4.
    Lawden, D. F.,Optimal Trajectories for Space Navigation, Butterworths, London, England, 1963.Google Scholar
  5. 5.
    Edelbaum, T. N.,Optimal Space Trajectories, Analytical Mechanics Associates Report No. 69-4, 1969.Google Scholar
  6. 6.
    Edelbaum, T. N.,How Many Impulses?, Aeronautics and Astronautics, Vol. 5, pp. 64–69, 1967.Google Scholar
  7. 7.
    Bell, D. J.,Optimal Space Trajectories, A Review of Published Work. Aeronatuical Journal, Vol. 72, pp. 141–146, 1968.Google Scholar
  8. 8.
    Robinson, A. C.,A Survey of Methods and Results in the Determination of Fuel-Optimal Space Maneuvers, AAS Paper No. 68-091, AAS/AIAA Astrodynamics Specialist Conference, 1968.Google Scholar
  9. 9.
    Gobetz, F. W., andDoll, J. R.,A Survey of Impulsive Trajectories, AIAA Journal, Vol. 7, pp. 801–834, 1969.Google Scholar
  10. 10.
    Marec, J. P.,Optimal Space Trajectories, Elsevier Scientific Publishing Company, New York, New York, 1979.Google Scholar
  11. 11.
    Prussing, J. E.,Optimal Four-Impulse Fixed-Time Rendezvous in the Vicinity of a Circular Orbit, AIAA Journal, Vol. 7, pp. 928–935, 1969.Google Scholar
  12. 12.
    Jones, J. B.,Optimal Rendezvous in the Neighborhood of a Circular Orbit, Journal of the Astronautical Sciences, Vol. 24, pp. 55–90, 1976.Google Scholar
  13. 13.
    Lawden, D. F.,Optimal Powered Arcs in an Inverse Square Law Field, ARS Journal, Vol. 31, pp. 566–568, 1961.Google Scholar
  14. 14.
    Lawden, D. F.,Optimal Intermediate-Thrust Arcs in a Gravitational Field, Astronautica Acta, Vol. 8, pp. 106–123, 1962.Google Scholar
  15. 15.
    Kelley, H. J.,Singular Extremals in Lawden's Problem of Optimal Rocket Flight, AIAA Journal, Vol. 1, pp. 1578–1580, 1963.Google Scholar
  16. 16.
    Kopp, R. E., andMoyer, H. G.,Necessary Conditions for Singular Extremals, AIAA Journal, Vol. 3, pp. 1439–1444, 1965.Google Scholar
  17. 17.
    Robbins, H. M.,Optimality of Intermediate-Thrust Arcs of Rocket Trajectories, AIAA Journal, Vol. 3, pp. 1094–1098, 1965.Google Scholar
  18. 18.
    Robbins, H. M.,Optimal Rocket Trajectories with Subarcs of Intermediate Thrust, 17th International Astronautical Congress, Madrid, Spain, 1966.Google Scholar
  19. 19.
    Kelley, H. J., Kopp, R. E., andMoyer, H. G.,Singular Extremals, Topics in Optimization, Edited by G. Leitmann, Academic Press, New York, New York, 1967.Google Scholar
  20. 20.
    Marchal, C., Généralisation Tridimensionelle et Étude de L'Optimalité des Arcs á Poussée Intermediaire de Lawden, La Recherche Aérospatiale, Vol. 2, pp. 3–13, 1968.Google Scholar
  21. 21.
    Archenti, A., andMarchal, C.,Intégration Numérique des Arcs á Poussée Intermédiaire et Étude de Leur Optimalité, 21st International Astronautical Congress, pp. 127–138, 1971.Google Scholar
  22. 22.
    Archenti, A., andVinh, N.,Intermediate-Thrust Arcs and Their Optimality in a Central, Time-Invariant Force Field, Journal of Optimization Theory and Applications, Vol. 11, pp. 293–304, 1973.Google Scholar
  23. 23.
    Breakwell, J. V., andDixon, J. F.,Minimum-Fuel Rocket Trajectories Involving Intermediate-Thrust Arcs, Journal of Optimization Theory and Applications, Vol. 17, pp. 465–479, 1975.Google Scholar
  24. 24.
    Lee, E. B., andMarkus, L.,Foundations of Optimal Control Theory, John Wiley and Sons, New York, New York, 1967.Google Scholar
  25. 25.
    Carter, T.,How Many Intersections Can a Helical Curve Have with the Unit Sphere during One Period?, American Mathematical Monthly, Vol. 93, pp. 41–44, 1986.Google Scholar
  26. 26.
    Athans, M., andFalb, P.,Optimal Control, An Introduction to the Theory and Its Applications, McGraw-Hill Book Company, New York, New York, 1966.Google Scholar
  27. 27.
    LaSalle, J. P.,The Time Optimal Control Problem, Contributions to the Theory of Nonlinear Oscillations, Princeton University Press, Princeton, New Jersey, Vol. 5, pp. 1–24, 1960.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • T. E. Carter
    • 1
    • 2
  1. 1.Eastern Connecticut State UniversityWillimantic
  2. 2.Worcester Polytechnic InstituteWorcester

Personalised recommendations