Leaching of chalcopyrite byThiobacillus thiooxidans and oxidized copper ore byThiobacillus ferrooxidans isolated from local environments

  • Zafar M. Khalid
  • Kauser A. Malik
Other Research Papers

Summary

Feasibility for bacterial leaching of two different copper ores from Pakistan was investigated with locally isolated, acidophilic thiobacilli in shake flask culture at 28±2°C. After a lag period of 16 d,Thiobacillus thiooxidans solubilized up to 19% of copper present in chalcopyrite ore in 14 d before entering stationary phase. In oxidized copper ore amended with chalcopyrite ore and supplemented with sulphur to provide an energy source forT. ferrooxidans, the pH dropped as a result of bacterial growth and was accompanied by copper solubilization. The highest copper release, 61% of total, occurred in flasks having oxidized copper ore, sulphur and calcopyrite (1∶1∶1, by weight) and inoculated withT. ferrooxidans. Supplementation used in these tests resulted in nearly six times more solubilization as compared to tests conducted without supplementation.

Keywords

Chalcopyrite Shake Flask Shake Flask Culture High Copper Thiobacillus 

Résumé

On a testé la faisabilité de la lixiviation bactérienne de deux minerais différents de cuivre du Pakistan au moyen de thiobacilli acidophiles,isolés localement, en culture en flaçons agités à 28 ±2°C. Après une période de latence de 16 jours,Thiobacillus thiooxidans a solubilisé jusqu'à 19% du cuivre présent dans le minerai de chalcopyrite en 14 jours avant d'entrer en phase stationnaire de croissance. Dans un minerai de cuivre amendé par le minerai de chalcopyrite et additionné de soufre de manière à fournir une source d'énergie pourT. ferrooxidans, le pH a baissé comme suite de la croissance bactérienne, ce qui a entraîné la solubilisation du cuivre. La libération la plus élevée de cuivre, 61% au total, a eu lieu dans les flaçons qui avaient à oxyder le minerai de cuivre, le soufre et la chalcopyrite oans les proportions de 1∶1∶1 en poids, et qui avaient été inoculés parT. ferrooxydans. La supplémentation effectuée dans ces tests a eu pour effet de dissoudre six fois plus de cuivre que dans les tests conduits sans supplémentation.

Resumen

Se ha estudiado la posibilidad de realizar un lixiviado mediante bacterias de dos minerales de cobre del Pakistan. Las bacterias utilizadas son cepas, aísladas localmente, de tiobacilos acidófilos que se hacen crecer en un medio líquido en agitación a 28±2°C. Después de una fase lag de 16 dThiobacillus thiooxidans solubilizó hasta 19% del cobre presente en la calcopirita en 14 d, antes de alcanzar la fase estacionaria. El mineral de cobre oxidado se modificó con calcopirita y se suplementó con azufre afín de sumministrar una fuente de energía paraT. ferrooxidans, a resultas del crecimiento bacteriano el pH disminuyó solubilizándose cobre. La mayor cantidad de cobre sulubilizado se cencontró en frascos con mineral de cobre oxidado, azufre y calcopirita (1∶1∶1 en peso) e inoculados conT. ferrooxidans. La adición de suplementos incrementó 6 veces la solubilización comparada con la obtenida en ensayos sin adición de suplementos.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agate, A. D. &Khinvasara N. J. 1986. Bioleaching of copper ores and concentrate of Malanjkhand area, India. InWorkshop on Biotechnology for the Mining, Metal Refining and Fossil Fuel Processing Industries. Eds. Ehrlich, H. L. & Holmes, D. S. pp. 83–90. Biotechnology and Bioengineering Symposium 16. New York: John Wiley & Sons Inc.Google Scholar
  2. Bosecker, K. 1983. Microbial recycling of industrial waste products. InRecent Progress in Biohydrometallurgy eds. Rossi, G. & Torma, A. E. pp. 331–345. Iglesias, Italy: Associazione Mineraria Sarda.Google Scholar
  3. Bosecker, K., Neuschutz, D. &Scheffler U. 1978. Microbiological leaching of carbonate rich German copper shale. InMetallurgical Application of Bacterial Leaching and Related Microbiological Phenomena. Eds. Murr, L. E., Torma, A. E. & Brierley, J. A. pp. 389–401. New York: Academic Press.Google Scholar
  4. Groudev, S. N. 1983 Oxidation of zinc sulphides byThiobacillus ferrooxidans andT. thiooxidans.Comptes Rendus Academy Bulgare Science 36, 105–108.Google Scholar
  5. Groudev, S. N., Genchev, F. N., Gaidarjiev, S. S. & Groudeva, V. I. 1982. Large scale application of biological copper dump leaching at Vlaikov Vrah, Bulgaria, Proceedings of the 14th International Mineral Processing Congress in Toronto, October 17–23.Google Scholar
  6. Kelly, D. P., Norris, P. R. &Brierley, C. L. 1979. Microbiological methods for the extraction and recovery of metals. InMicrobial Technology Symposium of Society for General Microbiology, eds. Bull, A. T., Ellwood, D. C. & Ratledge, C. 29 pp. 263–308. Cambridge: Cambridge University Press.Google Scholar
  7. Khalid, Z. M. &Malik, K. A. 1987. Isolation and characterization of some acidophilic thiobacilli from sewage waters.Pakistan Journal of Scientific and Industrial Research 30, 905–908.Google Scholar
  8. Khalid, A. M. &Ralph, B.J. 1977 The leaching behaviour of various zinc sulphide mineralswith three Thiobacillus species. InGBF Monograph Series No. 4, Conference Baterial Leaching. Ed. Schwartz, W. pp. 165–173. Weinheim: Verlag Chemie.Google Scholar
  9. Lawrance, R. W., Vizoslyi, A., Vos, R. J. & Bruynesteyn, A. 1984. Continuous bioleaching of copper concentrates. American Institute for Chemical Engineers, National Meeting, March 11–15, Atlanta, Georgia, USA.Google Scholar
  10. Lundgren, D. G., Valkove-Valchanova M. &Reed, R. 1986. Chemical reactions important in bioleaching and bioaccumulation. InWorkshop on Biotechnology for the Mining, Metal Refining and Fossil Fuel Processing Industries. Biotechnology Bioengineering Symposium 16. Eds Ehrlich, H. L. & Holmes, D. S. pp. 7–22 New York: John Wiley and Sons Inc.Google Scholar
  11. Ralph, B. J. 1985. Biotechnology applied to raw minerals processing. InComprehensive Biotechnology. The principles, Application and Regulation of Biotechnology in Industry, Agriculture and Medicine. Editor in Chief; Murray Moo Young. Vol. 4. The practice of Biotechnology: Speciality Products and Service Activities Vol. ed Robinson, C. W. & Howell, J. A. pp. 201–234. Oxford: Pergamon Press.Google Scholar
  12. Silverman, M. P. &Lundgren, D. G. 1959. Studies on chemoautotrophic bacteriumFerroobacillus ferrooxidans-I. An improved medium and a harvesting procedure for screeninghigh cell yield.Journal of Bacteriology 77: 642–647.Google Scholar
  13. Sullivan, A. E., Zajic, J. E. &Jack, T. R. 1980. The effect of chemical and biological redox reactions on the growth ofThiobacillus thiooxidans. InBiogeochemistry of Ancient and Modern Environments. Eds Trudinger, P. A., Walter, M. R., & Ralph, B. J. pp. 521–528. Canberra: Australian Academy of Science.Google Scholar
  14. Wadsworth, M. E. 1982. Hydrometallurgy—past, present and future. InHydrometallurgy Research Development and Plant Practice. Eds Osseo-Assare, K. & Miller, J. D. pp. 3–38. New York: AIME.Google Scholar
  15. Biotechnology pp. 16–20.Google Scholar

Copyright information

© Oxford University Press 1988

Authors and Affiliations

  • Zafar M. Khalid
    • 1
  • Kauser A. Malik
    • 1
  1. 1.Soil Biology DivisionNuclear Institute for Agriculture and BiologyFaisalabadPakistan

Personalised recommendations