, Volume 91, Issue 1, pp 269–284 | Cite as

Accumulative phases for heavy metals in limnic sediments

  • Ulrich Förstner
Part Five: Sedements as Concentrators of Natural and Anthropogenic, Organic and Inorganic Materials


Data from mechanical concentrates of recent sediments indicate that clay minerals, clay-rich aggregates and heavy minerals are the major carriers of heavy metals in detrital sediment fractions. Hydrous Fe/Mn oxides and carbonates and sulfides, in their specific environments, are the predominant accumulative phases for heavy metals in autochthonous fractions. Sequential chemical extraction techniques permit the estimation of characteristic heavy metal bonding forms: exchangeable metal cations, easily reducible, moderately reducible, organic and residual metal fractions, whereby both diagenetic processes and the potential availability of toxic compounds can be studied. The data from lakes affected by acid precipitation indicate that zinc, cobalt and nickel are mainly released from the easily reducible sediment fractions and cadmium from organic phases. In contrast at pH 4.4, neither lead nor copper seem to be remobilized to any significant extent. Immobilization by carbonate precipitation seems to provide an effective mechanism for the reduction of dissolved inputs 9f metals such as zinc and cadmium in pH-buffered, hard water systems.


heavy metals sediment concentrates extraction availability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschuler, Z. S., 1978. Trace elements as discriminants of origin in marine phosphorites. Abstr. 10th Int. Congress of Sedimentology, Jerusalem, July 9–14, 1978, pp. 16–17.Google Scholar
  2. Angino, E. E., Magnuson, L. M., Waugh, T. C., Galle, O. K. & Bredfeldt, J., 1970. Arsenic in detergents: possible danger and pollution hazard. Science 168: 389–390.PubMedGoogle Scholar
  3. Arrhenius, G. O. S. & Korkish, J., 1959. Uranium and thorium in marine minerals. Int. Ocean. Congress Am. Assoc. Adv. Sci. preprints. pp. 497.Google Scholar
  4. Aston, S. R. & Chester, R., 1973. The influence of suspended particles on the precipitation of iron in natural waters. Estuarine Coastal Mar. Sci. 1: 225–231.Google Scholar
  5. Banat, K., Förstner, U. & Müller, G., 1972. Schwermetalle in Sedimenten von Donau, Rhein, Ems, Weser and Elbe im Bereich der Bundesrepublik Deutschland. Naturwissenschaften 59: 525–528.Google Scholar
  6. Bruland, K. W., Bertine, K., Koide, M. & Goldberg, E. D., 1974. History of metal pollution in southern California coastal zone. Environ. Sci. Technol. 8: 425–432.Google Scholar
  7. Burns, R. G. & Burns, V. M., 1977. Mineralogy of ferromanganese nodules. In: Glasby, G. P. (Ed.) Marine Manganese Deposits. Elsevier Oceanographic Series 15: pp. 185–248.Google Scholar
  8. Callender, E. & Bowser, C. J., 1976. Freshwater ferromanganese deposits. In: Wolf, K. H. (Ed.) Handbook of Strata-Bound and Stratiform Ore Deposits, Vol. 7, pp. 341–394. Elsevier, Amsterdam.Google Scholar
  9. Callender, E., Bowser, C. J. & Rossman, R., 1974. Geochemistry of ferromanganese and manganese carbonate crusts from Green Bay, Lake Michigan. Trans. Am. Geophys. Union. 54: 340.Google Scholar
  10. Calvert, S. E. & Price, N. B., 1977. Geochemical variation in ferromanganese nodules and associated sediments from the Pacific Ocean. Mar. Chem. 5: 43–74.CrossRefGoogle Scholar
  11. Cameron, E. M. & Ballantyne, S. B., 1975. Experimental hydrogeochemical surveys on the High Lake and Hackett River areas, Northwest Territories. Geol. Surv. Can. Pap. 75–29: pp. 19.Google Scholar
  12. Chao, L. L., 1972. Selective dissolution of manganese oxides from soils and sediments with acidified hydroxylamine hydrochloride. Soil Sci. Soc. Am. Proc. 36: 764–768.Google Scholar
  13. Chen, K. Y., Gupta, S. K., Sycip, A. Z., Lu, J. C. S., Knezevic, M. & Choi, W. W., 1976. The effect of dispersion, settling and resedimentation of migration of chemical constituents during open water disposal of dredged material. Contract Rept., U.S. Army Eng. Waterways Exp. Sta., Vicksburg, Miss. pp. 221.Google Scholar
  14. Chester, R. & Hughes, M. J., 1967. A chemical technique for the separation of ferromanganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediments. Chem. Geol. 2: 249–262.CrossRefGoogle Scholar
  15. Chester, R. & Hughes, M. J., 1969. The trace element geochemistry of a North Pacific pelagic clay core. Deep-Sea Res. 16: 639–654.Google Scholar
  16. Chester, R. & Messiha-Hanna, R., 1970. Trace-element partition patterns in North Atlantic deep sea sediments. Geochim. cosmochim. Acta 34: 1121–1128.CrossRefGoogle Scholar
  17. Cooper, B. S. & Harris, R. C., 1974. Heavy metals in organic phases of river and estuarine sediment. Mar. Pollut. Bull. 5: 24–26.CrossRefGoogle Scholar
  18. Cronan, D. S., 1976. Basal metalliferous sediments from the eastern Pacific. Geol. Soc. Am. Bull. 87: 928–934.Google Scholar
  19. Cronan, D. S. & Thomas, R. L., 1970. Ferromanganese concretions in Lake Ontario. Can. J. Earth Sci. 7: 1347–1349.Google Scholar
  20. Cronan, D. S. & Thomas, R. L., 1972. Geochemistry of ferromanganese oxide concretions and associated deposits in Lake Ontario. Geol. Soc. Am. Bull. 83: 1493–1502.Google Scholar
  21. Damiani, V., Ferrario, A., Gavelli, G. & Thomas, R. L., 1977. Trace metal composition and fractionation of Mn, Fe, S, P, Ba, and Si in the Bay of Quinte freshwater ferro-manganese concretions, Lake Ontario. In: Golterman, H. (Ed.) Interactions between Sediments and Freshwater, pp. 83–93. Junk/-Pudoc, The Hague/ Wageningen.Google Scholar
  22. Dean, W. E., 1970. Fe-Mn oxidate crusts in Oneida Lake, New York. Proc. Conf. Great Lakes Res. 13: 217–226.Google Scholar
  23. Degens, E. T. & Stoffers, P., 1977. Phase boundaries as an instrument for metal concentration in geological systems. In: Klemm, D. D. & Schneider, H.-J. (Eds.) Time- and StrataBound Ore Deposits, pp. 25–45. Springer, Heidelberg.Google Scholar
  24. Degens, E. T., Okada, H., Honjo, S. & Hathaway, J. C., 1972. Microcrystalline sphalerite in resin globules suspended in Lake Kivu, East Africa. Miner. deposita 7: 1–12.CrossRefGoogle Scholar
  25. De Groot, A. J., Salomons, W. & Allersma, E., 1976. Processes affecting heavy metals in estuarine sediments. In: Burton, J. D. & Liss, P. S. (Eds.) Estuarine Chemistry, pp. 131–157. Academic Press, London.Google Scholar
  26. Deurer, R., Förstner, U. & Schmoll, G., 1978. Selective chemical extraction of carbonate-associated metals from recent lacustrine sediments. Geochim. cosmochim. Acta 42: 425–427.CrossRefGoogle Scholar
  27. Dossis, P. & Warren, L. J., 1980. Distribution of heavy metals between the minerals and organic debris in a contaminated marine sediment. In: Baker, R. A. (Ed.) Contaminants and Sediments, Vol. 1, pp. 119–138. Ann Arbor Science Publ., Ann Arbor, Mich.Google Scholar
  28. Engler, R. M., Brannon, J. M. & Rose, J., 1974. A practical selective extraction procedure for sediment characterization. 168th Meeting ACS, Atlantic City. pp. 17.Google Scholar
  29. Förstner, U., 1976. Lake sediments as indicators of heavy-metal pollution. Naturwissenschaften 63: 465–470.PubMedGoogle Scholar
  30. Förstner, U., 1977. Metal concentrations in freshwater sediments — natural background and cultural effects. In: Goltermann, H. L. (Ed.) Proc. Int. Symp. Interactions between Sediments and Fresh Water, Amsterdam, Sept. 6–10, 1976, pp. 94–103. Junk, The Hague.Google Scholar
  31. Förstner, U., 1978. Metallanreicherungen in rezenten See-Sedimenten — geochemischer background and zivilisatorische Einflüsse. Mitt. Nationalkommitee der B.R. Deutschland für das Internationale Hydrologische Programm der UNESCO, Vol. 2, Koblenz. pp. 66.Google Scholar
  32. Förstner, U., 1981. Recent heavy metal accumulations in limnic sediments. In: Wolfs, K. H. (Ed.) Handbook of StrataBound and Stratiform Ore Deposits, pp. 179–270. Elsevier, Amsterdam.Google Scholar
  33. Förstner, U. & Müller, G., 1975. Factors controlling the distribution of minor and trace metals (heavy metals, V, Li, Sr) in recent lacustrine sediments. IX Int. Sedimentol. Congr., Nice, pp. 57–63.Google Scholar
  34. Förstner, U. & Patchineelam, S. R., 1980. Chemical associations of heavy metals in polluted sediments from the Lower Rhine River. In: Kavanaugh, M. & Leckie, J. O. (Eds.) Particulates in Water: Characterization, Fate, Effects and Removal. ACS Advances in Chemistry Series 189: pp. 177–193.Google Scholar
  35. Förstner, U. & Salomons, W., 1980. Trace metal analysis on polluted sediments. I. Assessment of sources and intensities. Environ. Technol. Lett. 1: 494–505.Google Scholar
  36. Förstner, U. & Wittmann, G. T. W., 1979. Metal Pollution in the Aquatic Environment. Springer, Berlin. pp. 486.Google Scholar
  37. Fortescue, J. A. C., 1980. Environmental Geochemistry. Springer Verlag, New York. pp. 347.Google Scholar
  38. Gibbs, R. J., 1973. Mechanisms of trace metal transport in rivers. Science 180: 71–73.Google Scholar
  39. Goldberg, E. D. & Arrhenius, G. O. S., 1958. Chemistry of Pacific pelagic sediments. Geochim. cosmochim. Acta 13: 153–212.CrossRefGoogle Scholar
  40. Gupta, S. K. & Chen, K. Y., 1975. Partitioning of trace metals in selective chemical fractions of near-shore sediments. Environ. Lett. 10: 129–158.PubMedGoogle Scholar
  41. Guy, R. D. & Chakrabarti, C. L., 1975. Distribution of metal ions between soluble and particulate forms. Abstr. Int. Conf. Heavy Metals in the Environment, Toronto, D-29.Google Scholar
  42. Halbach, P., Rehm, E. & Marchig, V., 1979. Distribution of Si, Mn, Fe, Ni, Cu, Co, Zn, Pb, Mg and Ca in grain-size fractions of sediment samples from a manganese nodule field in the Central Pacific Ocean. Mar. Geol. 29: 237–252.CrossRefGoogle Scholar
  43. Hamilton-Taylor, J., 1979. Enrichments of zinc, lead, and copperin Recent sediments of Windermere, England. Environ. Sci. Technol. 13: 693–697.Google Scholar
  44. Harris, R. C. & Troup, A. G., 1969. Freshwater ferromanganese concretions, chemistry and internal structure. Science 166: 604–606.Google Scholar
  45. Hartmann, M., 1979. Evidence for early diagenetic mobilization of trace metals from discolorations of pelagic sediments. Chem. Geol. 26: 277–293.CrossRefGoogle Scholar
  46. Heath, G. R. & Dymond, J., 1977. Genesis and transformation of metalliferous sediments from the East Pacific Rise, Bauer Deep, and Central Basin, northwest Naszca plate. Geol. Soc. Am. Bull. 88: 723–733.Google Scholar
  47. Hirst, D. M., 1972. The geochemistry of modern sediments from the Gulf of Paria. 11. The location and distribution of trace elements. Geochim. cosmochim. Acta 26: 1147–1187.CrossRefGoogle Scholar
  48. Holmgren, G. S., 1967. A rapid citrate-dithionite extractable iron procedure. Soil Sci. Soc. Am. Proc. 31: 210–211.Google Scholar
  49. Horowitz, A., 1974. The geochemistry of sediments from the northern Reykjanes Ridge and the Iceland-Faeroes Ridge. Mar. Geol. 17: 103–122.CrossRefGoogle Scholar
  50. Horowitz, A. & Cronan, D. S., 1976. The geochemistry of basal sediments from the north Atlantic Ocean. Mar. Geol. 20: 205–228.CrossRefGoogle Scholar
  51. Jackson, M. L., 1958. Chemical Analysis. Prentice Hall, Englewood Cliffs, N. J. pp. 498.Google Scholar
  52. Jenne, E. A., 1968. Controls on Mn, Fe, Co, Ni, Cu, and Zn concentrations in soils and water: the significant role of hydrous Mn and Fe oxides. In: Advances in Chemistry Ser. 73, Trace Inorganics in Water, pp. 337–387. Am. Chem. Soc.Google Scholar
  53. Jenne, E. A., 1976. Trace element sorption by sediments and soils — sites and processes. In: Chappel, W. & Petersen, K. (Eds.) Symposium on Molybdenum, Vol. 2, pp. 425–553. Marcel Dekker, New York.Google Scholar
  54. Jonasson, I. R., 1976. Detailed hydrogeochemistry of two small lakes in the Grenville Geological Province. Geol. Surv. Can. Pap. 76–13: pp. 37.Google Scholar
  55. Jonasson, I. R., 1977. Geochemistry of sediment/ water interactions of metals, including observations on availability. In: Shear, H. & Watson, A. E. P. (Eds.) The Fluvial Transport of Sediment-Associated Nutrients and Contaminants, pp. 255–271. IJC/PLUARG: Windsor/Ont.Google Scholar
  56. Jones, B. F. & Bowser, C. J., 1978. The mineralogy and related chemistry of lake sediments. In: Lerman, A. (Ed.) Lakes — Chemistry, Geology, Physics, pp. 179–235. Springer, New YorkGoogle Scholar
  57. Kemp, A. L. W., Thomas, R. L., Dell, C. I. & Jaquet, J.-M., 1976. Cultural impact on the geochemistry of sediments in Lake Erie. J. Fish. Res. Bd Can. 33: 440–462.Google Scholar
  58. Langmyhr, F. J., Solberg, R. & Thomassen, Y., 1977. Atom absorption spectrometric determination of thirteen minor and trace metals in phosphate rock concentrates. Analyt. chim. Acta 92: 105–109.CrossRefGoogle Scholar
  59. Lee, G. F., 1975. Role of hydrous metal oxides in the transport of heavy metals in the environment. In: Krenkel, P. A. (Ed.) Heavy Metals in the Aquatic Environment, pp. 137–147. Pergamon, Oxford.Google Scholar
  60. Lerman, A., 1977. Migrational processes and chemical reactions in interstitial waters. In: Goldberg, E. D., McCave, I. N., O'Brien, J. J. & Steel, J. H. (Eds.) The Sea, Vol. 6, pp. 695–738. Wiley, New York.Google Scholar
  61. Lichtfuss, R., 1977. Schwermetalle in den Sediment schleswig-holsteinischer Fließgewässer — Untersuchungen zu Gesamtgehalten und Bindungsformen. Dissertation Universität Kiel. pp. 133.Google Scholar
  62. Ljunggren, P., 1955. Chemistry and radioactivity of some Mn and Fe bog ores. Geol. Fören. Stockh. Förh. 77: 33–44.Google Scholar
  63. Loring, D. H., 1978. Geochemistry of zinc, copper and lead in the sediments of the estuary and Gulf of St. Lawrence. Can. J. Earth Sci. 15: 757–772.Google Scholar
  64. Loring, D. H., 1979. Geochemistry of cobalt, nickel, chromium, and vanadium in the sediments of the estuary and open Gulf of St. Lawrence. Can. J. Earth Sci. 16: 1196–1209.Google Scholar
  65. Luoma, S. N. & Bryan, G. W., 1979. Trace metal availability: modelling chemical and biological interactions of sediment-bound zinc. In: Jenne, E. A. (Ed.) Chemical Modelling in Aqueous Systems. ACS Symp. Ser. 93: pp. 577–60.Google Scholar
  66. Luoma, S. N. & Jenne, E. A., 1977. Estimating bioavailability of sediment-bound metals with chemical extractants. In: Hemphill, D. D. (Ed.) Trace Substances in Environmental Health, Vol. 10, pp. 343–351. Univ. Missouri Press, Columbia, Missouri.Google Scholar
  67. Lynn, D. C. & Bonatti, E., 1965. Mobility of manganese in diagenesis of deep-sea sediments. Mar. Biol. 3: 457–474.Google Scholar
  68. Manheim, F. T., 1965. Manganese-iron accumulations in the shallow marine environment. In: Symp. on Marine Geochemistry. Occ. Publ. Univ. Rhode Island, Vol. 3, pp. 217–276.Google Scholar
  69. Patchineelam, S. R., 1975. Untersuchungen über die Hauptbindungsarten und die Mobilisierbarkeit von Schwermetallen in fluviatilen Sedimenten. Thesis, Univ. Heidelberg. pp. 137.Google Scholar
  70. Pilkington, E. S. & Warren, L. J., 1977. Determination of heavy-metal distribution in marine sediments. Environ. Sci. Technol. 13: 295–302.Google Scholar
  71. Rendell, P. S., Batley, G. E. & Cameron, A. J., 1980. Adsorption as a control of metal concentrations in sediment extracts. Environ. Sci. Technol. 14: 314–318.Google Scholar
  72. Reuther, R., Wright, R. F. & Forstner, U., 1981. Distribution and chemical forms of heavy metals in sediment cores from two Norwegian lakes affected by acid precipitation. Proc. Int. Symp. Heavy Metals in the Environment, Amsterdam. pp. 318–321. CEP Consultants, Edinburgh.Google Scholar
  73. Rossmann, R., 1973. Lake Michigan ferromanganese nodules. Ph.D. thesis, Univ. Michigan. pp. 151 (unpubl.).Google Scholar
  74. Ruppert, H., 1980. Fixation of metals on hydrous manganese and iron oxide phases in marine Mn-Fe-nodules and sediments. Chem. Erde 39: 97–132.Google Scholar
  75. Salomons, W. & Förstner, U., 1980. Trace metal analysis on polluted sediments. II. Evaluation of environmental impact. Environ. Technol. Lett. 1: 506–517.Google Scholar
  76. Sayles, F. L., Ku, T.-L. & Bowker, P. C., 1975. Chemistry of ferromanganoan sediment of the Bauer Deep. Geol. Soc. Am. Bull. 86: 1423–1431.Google Scholar
  77. Schmoll, G. & Förstner, U., 1979. Chemical associations of heavy metals in lacustrine sediments. I. Calcareous lake sediments from different climatic zones. Neues Jahrb. Mineral. Abh. 135: 190–208.Google Scholar
  78. Schöttle, M. & Friedman, G. M., 1972. Freshwater iron-manganese nodules of Lake George, New York. Geol. Soc. Am. Bull. 82: 101–110.Google Scholar
  79. Schwertmann, U., 1964. Differenzierung der Eisenoxide des Bodens durch photochemische Extraktion mit sauerer Ammoniumoxalat-Ldsung. Z. Ptlanzenernähr. Düng. Bodenkde. 105: 194–202Google Scholar
  80. Sholkovitz, E. R., Boyle, E. A. & Price, N. B., 1978. The removal of dissolved humic acids and iron during estuarine mixing. Earth Planet. Sci. Lett. 40: 130–136.CrossRefGoogle Scholar
  81. Singer, A. & Navrot, J., 1978. Siderite in Birket Ram Lake sediments. Abstr. 10th Int. Congr. on Sedimentology, July 9–14, Jerusalem, pp. 616–617.Google Scholar
  82. Stoffers, P. & Müller, G., 1978. Mineralogy and lithofacies of Black Sea sediments — Leg 42B Deep Sea Drilling Project. In: Ross, D. A., Neprochnov, Y. P. et al. (Eds.) Initial Reports of the Deep-Sea Drilling Project, 42(2), pp. 373–411. U.S. Govt. Printing Office, Washington, D.C.Google Scholar
  83. Tessier, A., Campbell, P. G. C. & Bisson, M., 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analyt. Chem. 51: 844–851.Google Scholar
  84. Theis, T. L. & Singer, P. C., 1974. Complexation of iron (III) by organic matter and its effect on iron (II) oxygenation. Environ. Sci. Technol. 8: 569–572.Google Scholar
  85. Tobschall, H. J., Gbpel, C. & Rast, U., 1978. Geochemistry of organic gels and organic sediments from selected lakes of northern Norway. Abst. 10th Int. Cong. on Sedimentology, Jerusalem, pp. 682–683.Google Scholar
  86. Volkov, I. I. & Fomina, L. S., 1974. Influence of organic material and processes of sulfide formation on distribution of some trace elements in deep-water sediments of the Black Sea. Am. Ass. Pet. Geol. Mem. 20: 456–476.Google Scholar
  87. Wilber, W. G. & Hunter, J. V., 1979. The impact of urbanization on distribution of heavy metals in bottom sediments of the Saddle River. Water Resour. Bull. 15: 790–800.Google Scholar

Copyright information

© Dr W. Junk Publishers 1982

Authors and Affiliations

  • Ulrich Förstner
    • 1
  1. 1.Arbeitsbereich UmweltschutztechnikTechnische Universität Hamburg-HamburgHamburgF. R. G.

Personalised recommendations