Advertisement

Indefinite preference structures and decision analysis

  • I. S. Chien
  • P. L. Yu
  • D. Zhang
Contributed Papers

Abstract

It always takes time for people to digest information and make judgments. The decision maker's preference is not always clear and stable when decision analysis and decision making are performed. In this paper, we introduce a generalized preference structure to cope with indefinite preferences. We describe its general properties, its implication on value function representation, its solution concepts, and methods for obtaining the solutions.

Key Words

Multiple criteria optimization generalized preference structures value function nondominated solutions cone preference structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Debreu, G.,Representation of a Preference Ordering by a Numerical Function, Decision Processes, Edited by R. M. Thrall, C. H. Combes, and R. L. Davis, Wiley, New York, New York, 1954.Google Scholar
  2. 2.
    Fishburn, P. C.,Utility Theory for Decision Making, Wiley, New York, New York, 1970.Google Scholar
  3. 3.
    Gorman, W. M.,The Structure of Utility Functions, Review of Economic Studies, Vol. 35, pp. 367–390, 1968.Google Scholar
  4. 4.
    Keeney, R. L. andRaiffa, H.,Decisions with Multiple Objectives: Preferences and Value Tradeoffs, Wiley, New York, New York, 1976.Google Scholar
  5. 5.
    Steuer, R. E.,Multiple-Criteria Optimization, Wiley, New York, New York, 1985.Google Scholar
  6. 6.
    White, D. J.,Optimality and Efficiency, Wiley, New York, New York, 1982.Google Scholar
  7. 7.
    Yu. P. L.,Multiple-Criteria Decision Making: Concepts, Techniques and Extensions, Plenum Publishing Corporation, New York, New York, 1985.Google Scholar
  8. 8.
    Yu. P. L.,Cone Convexity, Cone Extreme Points, and Nondominated Solutions in Decision Problems with Multiobjectives, Journal of Optimization Theory and Applications, Vol. 14, pp. 319–377, 1974.Google Scholar
  9. 9.
    Zeleny, M.,Multiple-Criteria Decision Making, McGraw-Hill, New York, New York, 1982.Google Scholar
  10. 10.
    Rockafellar, R. T.,Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • I. S. Chien
    • 1
  • P. L. Yu
    • 2
  • D. Zhang
    • 2
  1. 1.College of Business AdministrationCreighton UniversityOmaha
  2. 2.School of BusinessUniversity of KansasLawrence

Personalised recommendations