Abstract
Conjugate gradient optimization algorithms depend on the search directions,
with different methods arising from different choices for the scalar β(k). In this note, conditions are given on β(k) to ensure global convergence of the resulting algorithms.
Similar content being viewed by others
References
Al-Baali, M.,Descent Property and Global Convergence of the Fletcher-Reeves Method with Inexact Line Searches, IMA Journal of Numerical Analysis, Vol. 5, No. 1, pp. 121–124, 1985.
Powell, M. J. D.,Nonconvex Minimization Calculations and the Conjugate Gradient Method, Report No. DAMTP 1983/NA14, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England, 1983.
Touati-Ahmed, D., andStorey, C.,Globally Convergent Hybrid Conjugate Gradient Methods, Journal of Optimization Theory and Applications, Vol. 64, No. 2, pp. 379–397, 1990.
Gilbert, J. C., andNocedal, J.,Global Convergence Properties of Conjugate Gradient Methods for Optimization, Rapport de Recherche No. 1268, Institut National de Recherche en Informatique et Automatique, Domaine de Voluceau, Rocquencourt, Le Chesnay, France, 1990.
Author information
Authors and Affiliations
Additional information
Communicated by L. C. W. Dixon
Rights and permissions
About this article
Cite this article
Hu, Y.F., Storey, C. Global convergence result for conjugate gradient methods. J Optim Theory Appl 71, 399–405 (1991). https://doi.org/10.1007/BF00939927
Issue Date:
DOI: https://doi.org/10.1007/BF00939927