Advertisement

Reference point approximation method for the solution of bicriterial nonlinear optimization problems

  • J. Jahn
  • A. Merkel
Contributed Papers

Abstract

This paper presents a reference point approximation algorithm which can be used for the interactive solution of bicriterial nonlinear optimization problems with inequality and equality constraints. The advantage of this method is that the decision maker may choose arbitrary reference points in the criteria space. Moreover, a special tunneling technique is given for the computation of global solutions of certain subproblems. Finally, the proposed method is applied to a mathematical example and a problem in mechanical engineering.

Key Words

Multi-objective optimization interactive methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hwang, C.-L., andMasud, A. S. M.,Multiple Objective Decision Making—Methods and Applications, Springer, Berlin, Germany, 1979.Google Scholar
  2. 2.
    Jahn, J.,A Method of Reference Point Approximation in Vector Optimization, Operations Research Proceedings 1987, Edited by H. Schellhaas, P. Van Beek, H. Isermann, R. Schmidt, and M. Zijlstra, Springer, Berlin, Germany, pp. 576–587, 1988.Google Scholar
  3. 3.
    Wierzbicki, A. P.,The Use of Reference Objectives in Multiobjective Optimization, Multiple Criteria Decision Making—Theory and Application, Edited by G. Fandel and T. Gal, Springer, Berlin, Germany, pp. 468–486, 1980.Google Scholar
  4. 4.
    Grauer, M.,Reference Point Optimization—The Nonlinear Case, Essays and Surveys on Multiple Criteria Decision Making, Edited by P. Hansen, Springer, Berlin, Germany, pp. 126–135, 1983.Google Scholar
  5. 5.
    Jahn, J.,Parametric Approximation Problems Arising in Vector Optimization, Journal of Optimization Theory and Applications, Vol. 54, pp. 503–516, 1987.Google Scholar
  6. 6.
    Polak, E.,On the Approximation of Solutions to Multiple Criteria Decision Making Problems, Multiple Criteria Decision Making, Kyoto 1975, Edited by M. Zeleny, Springer, Berlin, Germany, pp. 271–281, 1976.Google Scholar
  7. 7.
    Luenberger, D. G.,Linear and Nonlinear Programming, Addison-Wesley, Reading, Massachusetts, 1984.Google Scholar
  8. 8.
    Merkel, A.,Ein Verfahren der Referenzpunktapproximation für bikriterielle nichtlineare Optimierungsprobleme, Diploma Thesis, University of Erlangen-Nürnberg, 1989.Google Scholar
  9. 9.
    Eschenauer, H., andSchäfer, E.,Interaktive Vektoroptimierung in der Strukturmechanik, Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 69, pp. T87-T89, 1989.Google Scholar
  10. 10.
    Eschenauer, H., andSchäfer, E.,Sandwichbalken mit Fachwerkunterbau, Report, Forschungslaboratorium für Angewandte Strukturoptimierung, University of Siegen, Siegen, Germany, 1989.Google Scholar
  11. 11.
    Eschenauer, H., andSchäfer, E.,Unterprogramm STRAN zur Berechnung eines Sandwichbalkens, Report, Forschungslaboratorium für Angewandte Strukturoptimierung, University of Siegen, Siegen, Germany, 1989.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • J. Jahn
    • 1
  • A. Merkel
    • 1
  1. 1.Institut für Angewandte MathematikUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations