Complementarity problem and the existence of the post-critical equilibrium state of a thin elastic plate

  • G. Isac
  • M. Théra
Contributed Papers

Abstract

Using the concept of a conically bounded set, we prove a variational principle for functionals defined on a locally compact pointed convex cone. Applying this principle to the nonlinear complementarity problem, we study the existence of the post-critical equilibrium state of a thin elastic plate, subjected to unilateral conditions.

Key Words

Complementarity problems variational inequalities conically bounded sets conically compact sets Von Kármán operator Galerkin approximation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, G.,Variational Inequalities, Complementarity Problems, and Duality Theorems, Journal of Mathematical Analysis and Applications, Vol. 58, pp. 1–10, 1977.Google Scholar
  2. 2.
    Bazaraa, M. S., Goode, J. J., andNashed, M. Z.,A Nonlinear Complementarity Problem in Mathematical Programming in Banach Space, Proceedings of the American Mathematical Society, Vol. 35, pp. 165–170, 1972.Google Scholar
  3. 3.
    Borwein, J. M.,Generalized Linear Complementarity Problems Treated without Fixed-Point Theory, Journal of Optimization Theory and Applications, Vol. 43, pp. 343–356, 1984.Google Scholar
  4. 4.
    Borwein, J. M.,Alternative Theorems for General Complementarity Problems, Proceedings of the Cambridge Conference on Infinite-Dimensional Programming, Springer-Verlag, New York, New York (to appear).Google Scholar
  5. 5.
    Isac, G.,Nonlinear Complementarity Problem and Galerkin Method, Journal of Mathematical Analysis and Applications, Vol. 108, pp. 563–574, 1985.Google Scholar
  6. 6.
    Karamardian, S.,Generalized Complementarity Problem, Journal of Optimization Theory and Applications, Vol. 8, pp. 161–168, 1971.Google Scholar
  7. 7.
    Luna, G.,A Remark on the Nonlinear Complementarity Problem, Proceedings of the American Mathematical Society, Vol. 48, pp. 132–134, 1975.Google Scholar
  8. 8.
    Moré, J. J.,Coercivity Conditions in Nonlinear Complementarity Problems, SIAM Review, Vol. 16, pp. 1–16, 1974.Google Scholar
  9. 9.
    Ciarlet, P., andRabier, P.,Les Équations de von Kármán, Springer-Verlag, New York, New York, 1980.Google Scholar
  10. 10.
    Cimetiere, A.,Un Problème de Flambement Unilatéral en Théorie des Plaques, Journal de Mécanique, Vol. 19, pp. 183–202, 1980.Google Scholar
  11. 11.
    Cottle, R. W.,Complementarity and Variational Problem, Symposia Mathematica, Vol. 19, pp. 177–208, 1976.Google Scholar
  12. 12.
    Bourgin, R. D.,Conically Bounded Sets in Banach Spaces, Pacific Journal of Mathematics, Vol. 44, pp. 411–419, 1973.Google Scholar
  13. 13.
    Berger, M. S.,On Von Kármán's Equations and the Buckling of a Thin Elastic Plate: (I) The Clamped Plate, Communications on Pure and Applied Mathematics, Vol. 20, pp. 687–719, 1967.Google Scholar
  14. 14.
    Berger, M. S., andFife, P. C.,Von Kármán's Equations and the Buckling of an Elastic Plate: (II) Plate with General Edge Conditions, Communications on Pure Applied Mathematics, Vol. 21, pp. 227–241, 1968.Google Scholar
  15. 15.
    Do, C.,The Buckling of a Thin Elastic Plate Subjected to Unilateral Conditions, Applications of Methods of Functional Analysis to Problems in Mechanics, Edited by P. Germain and B. Nayroles, Springer-Verlag, New York, New York, pp. 307–316, 1976.Google Scholar
  16. 16.
    Do, C.,Problèmes de Valeurs Propres pour une Inéquation Variationnelle sur un Cône et Application au Flambement Unilatéral d'une Plaque Mince, Comptes Rendus de l'Académie des Sciences, Paris, Série A, Vol. 280, pp. 45–48, 1975.Google Scholar
  17. 17.
    Do, C.,Bifurcation Theory of Elastic Plates Subjected to Unilateral Conditions, Journal of Mathematical Analysis and Applications, Vol. 60, pp. 435–448, 1977.Google Scholar
  18. 18.
    Kubrusly, C., andOdeon, J. T.,Nonlinear Eigenvalue Problems Characterized by Variational Inequalities with Applications to the Post-Buckling Analysis of Unilaterally Supported, Nonlinear Analysis, Theory, Methods and Applications, Vol. 5, pp. 1265–1284, 1981.Google Scholar
  19. 19.
    Potier-Ferry, M.,Charges Limites et Théorie d'Existence en Théorie des Plaques Élastiques, Comptes Rendus de l'Académie des Sciences, Pairs, Série A, Vol. 280, pp. 1317–1319, 1975.Google Scholar
  20. 20.
    Potier-Ferry, M.,Sur un Système Rencontré en Théorie des Plaques, Comptes Rendus de l'Académie des Sciences, Paris, Série A, Vol. 280, pp. 1385–1387, 1975.Google Scholar
  21. 21.
    Panagiotopoulos, P. D.,Inequality Problems in Mechanics and Applications, Convex and Nonconvex Energy Functions, Birkhäuser, Boston, Massachusetts, 1980.Google Scholar
  22. 22.
    Granas, A.,The Theory of Compact Vector Fields and Some of Its Applications to Topology of Functional Spaces, Rozprawy Matematyczne, Vol. 30, pp. 1–93, 1962.Google Scholar
  23. 23.
    Krasnoselskii, M. A.,Positive Solutions of Operator Equations, Groningen-Noordhoff, Amsterdam, Holland, 1964.Google Scholar
  24. 24.
    Isac, G.,Opérateurs Asymptotiquement Linéaires sur des Espaces Localement Convexes, Colloquium Mathematicum, Vol. 46, pp. 67–73, 1982.Google Scholar
  25. 25.
    Cain, G. L., Jr., andNashed, M. A.,Fixed Points and Stability for a Sum of Two Operators in Locally Convex Spaces, Pacific Journal of Mathematics, Vol. 39, pp. 581–592, 1971.Google Scholar
  26. 26.
    Berger, M. S.,Nonlinearity and Functional Analysis, Academic Press, New York, New York, 1977.Google Scholar
  27. 27.
    Berger, M. S., andSchechter, M.,On the Solvability of Semilinear Gradient Operator Equations, Advances in Mathematics, Vol. 25, pp. 97–132, 1977.Google Scholar
  28. 28.
    Vainberg, M. M.,Variational Method for the Study of Nonlinear Operators, Holden-Day, San Francisco, California, 1964.Google Scholar
  29. 29.
    Szulkin, A.,On a Class of Variational Inequalities Involving Gradient Operators, Journal of Mathematical Analysis and Applications, Vol. 100, pp. 486–499, 1984.Google Scholar
  30. 30.
    Giles, J. R.,Convex Analysis with Application in Differentiation of Convex Functions, Pitman, New York, New York, 1982.Google Scholar
  31. 31.
    Minty, G. J.,On Variational Inequalities for Monotone Operators, Advances in Mathematics, Vol. 30, pp. 1–7, 1978.Google Scholar
  32. 32.
    Lions, J. L., andStampacchia, G.,Variational Inequalities, Communications on Pure and Applied Mathematics, Vol. 20, pp. 493–519, 1967.Google Scholar
  33. 33.
    Kinderlehrer, D., andStampacchia, G.,An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, New York, 1980.Google Scholar
  34. 34.
    Duvaut, G., andLions, J. L.,Problèmes Unilatéraux dans la Théorie de la Flexion Forte des Plaques: (I) Le Cas Stationnaire, Journal de Mécanique, Vol. 13, pp. 51–74, 1974.Google Scholar
  35. 35.
    Duvaut, G., andLions, J. L.,Problèmes Unilatéraux dans la Théorie de la Flexion des Plaques: (II) Le Cas d'Évolution, Journal de Mécanique, Vol. 13, pp. 245–266, 1974.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • G. Isac
    • 1
  • M. Théra
    • 2
  1. 1.Département de MathématiquesCollège Militaire Royal de Saint-JeanSaint-JeanCanada
  2. 2.Département de MathémathiquesUniversité de LimogesLimogesFrance

Personalised recommendations