A class of stochastic games with ordered field property

  • O. J. Vrieze
  • S. H. Tijs
  • T. Parthasarathy
  • C. A. J. M. Dirven
Contributed Papers


It is shown that discounted general-sum stochastic games with two players, two states, and one player controlling the rewards have the ordered field property. For the zero-sum case, this result implies that, when starting with rational data, also the value is rational and that the extreme optimal stationary strategies are composed of rational components.

Key Words

Stochastic games ordered field property one-player controls rewards 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weyl, H.,Elementary Proof of a Minimax Theorem due to Von Neumann, Contributions to the Theory of Games, Edited by H. W. Kuhn and A. W. Tucker, Princeton University Press, Princeton, New Jersey, Vol. 1, pp. 19–25, 1950.Google Scholar
  2. 2.
    Dantzig, G. B.,Constructive Proof of the Minmax Theorem, Pacific Journal of Mathematics, Vol. 6, pp. 25–33, 1956.Google Scholar
  3. 3.
    Vorob'ev, N. N.,Equilibrium Points in Bimatrix Games, Theory of Probability and Its Applications, Vol. 3, pp. 293–309, 1958.Google Scholar
  4. 4.
    Kuhn, H. W.,An Algorithm for Equilibrium Points in Bimatrix Games, Proceedings of the National Academy of Sciences, Vol. 47, pp. 1657–1662, 1961.Google Scholar
  5. 5.
    Shapley, L. S.,Stochastic Games, Proceedings of the National Academy of Sciences, Vol. 39, pp. 1095–1100, 1953.Google Scholar
  6. 6.
    Vrieze, O. J.,Linear Programming and Undiscounted Stochastic Games in Which One Player Controls Transitions, Operations Research Spektrum, Vol. 3, pp. 29–35, 1981.Google Scholar
  7. 7.
    Parthasarathy, T., andRaghavan, T. E. S.,An Orderfield Property for Stochastic Games When One Player Controls Transition Probabilities, Journal of Optimization Theory and Applications, Vol. 33, pp. 375–392, 1981.Google Scholar
  8. 8.
    Vrieze, O. J., Tijs, S. H., Raghavan, T. E. S., andFilar, J. A.,A Finite Algorithm for the Switching Control Stochastic Game, Operations Research Spektrum, Vol. 5, pp. 15–24, 1983.Google Scholar
  9. 9.
    Sobel, M. J.,Myopic Solutions of Markov Decision Processes and Stochastic Games, Operations Research, Vol. 29, pp. 995–1009, 1981.Google Scholar
  10. 10.
    Parthasarathy, T., Tijs, S. H., andVrieze, O. J.,Stochastic Games with State-Independent Transitions and Separable Rewards, Selected Topics in Operations Research and Mathematical Economics, Edited by G. Hammer and D. Pallaschke, Springer-Verlag, Berlin, Germany, pp. 226–236, 1984.Google Scholar
  11. 11.
    Raghavan, T. E. S., Tijs, S. H., andVrieze, O. J.,On Stochastic Games with Additive Reward and Transition Structure, Journal of Optimization Theory and Applications, Vol. 47, pp. 451–464, 1985.Google Scholar
  12. 12.
    Hordijk, A., Vrieze, O. J., andWanrooy, G. L.,Semi-Markov Strategies in Stochastic Games, International Journal of Game Theory, Vol. 12, pp. 81–89, 1983.Google Scholar
  13. 13.
    Fink, A. M.,Equilibrium in a Stochastic n-Person Game, Journal of Science of the Hiroshima University, Series A-I, Vol. 28, pp. 89–93, 1964.Google Scholar
  14. 14.
    Tijs, S. H., andVrieze, O. J.,Perturbation Theory for Games in Normal Form and Stochastic Games, Journal of Optimization Theory and Applications, Vol. 30, pp. 549–567, 1980.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • O. J. Vrieze
    • 1
  • S. H. Tijs
    • 2
  • T. Parthasarathy
    • 3
  • C. A. J. M. Dirven
    • 4
  1. 1.Department of MathematicsUniversity of LimburgMaastrichtHolland
  2. 2.Department of MathematicsCatholic UniversityNijmegenHolland
  3. 3.Indian Statistical InstituteNew DelhiIndia
  4. 4.Department of EconometricsTilburg UniversityTilburgHolland

Personalised recommendations