Cutting planes and column generation techniques with the projective algorithm

  • J. L. Goffin
  • J. P. Vial
Contributed Papers

Abstract

The problem studied is that of solving linear programs defined recursively by column generation techniques or cutting plane techniques using, respectively, the primal projective method or the dual projective method.

Key Words

Karmarkar's algorithm nondifferentiable optimization cutting planes column generation techniques 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benders, J. F.,Partitioning Procedures for Solving Mixed Variables Programming Problems, Numerische Mathematik, Vol. 4, pp. 238–252, 1962.Google Scholar
  2. 2.
    Dantzig, G., andWolfe, P.,The Decomposition Algorithm for Linear Programming, Econometrica, Vol. 29, pp. 767–778, 1961.Google Scholar
  3. 3.
    Gillmore, P. C., andGomory, R. E.,A Linear Programming Approach to the Cutting Stock Problem: Part 2, Operations Research, Vol. 11, pp. 863–888, 1963.Google Scholar
  4. 4.
    Goffin, J. L.,Affine Methods in Nondifferentiable Optimization, CORE Discussion Paper No. 8744, Center for Operations Research and Econometrics, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 1987.Google Scholar
  5. 5.
    Adler, I., Karmarkar, N. K., Resende, M. C. G., andVeiga, G.,An Implementation of Karmarkar Algorithm for Linear Programming, Mathematical Programming, Vol. 44, pp. 297–335, 1989.Google Scholar
  6. 6.
    Goffin, J. L.,Affine and Projective Transformations in Nondifferentiable Optimization, Trends in Mathematical Optimization, Edited by K. H. Hoffmann, J. B. Hiriart-Urruty, C. Lemarechal, and J. Zowe, Birkhauser Verlag, Basel, Switzerland, pp. 79–91, 1988.Google Scholar
  7. 7.
    Megiddo, N., andShub, M.,Boundary Behavior of Interior Point Algorithms in Linear Programming, IBM, Research Division, Report No. RJ 5319 (54679), 1986.Google Scholar
  8. 8.
    Sonnevend, G.,New Algorithms in Convex Programming Based on a Notion of Center for Systems of Analytic Inequalities and on Rational Extrapolation, Trends in Mathematical Optimization, Edited by K. H. Hoffmann, J. B. Hiriart-Urruty, C. Lemarechal, and J. Zowe, Birkhauser Verlag, Basel, Switzerland, pp. 311–326, 1988.Google Scholar
  9. 9.
    Dikin, I. I.,Iterative Solution of Problems of Linear and Quadratic Programming, Doklady Akademii Nauk SSSR, Vol. 174, pp. 747–748, 1967.Google Scholar
  10. 10.
    Karmarkar, N.,A New Polynomial Time Algorithm for Linear Programming, Combinatorica, Vol. 4, pp. 373–395, 1984.Google Scholar
  11. 11.
    Anstreicher, K. M.,A Monotonic Projective Algorithm for Fractional Linear Programming, Algorithmica, Vol. 1, pp. 483–498, 1986.Google Scholar
  12. 12.
    de Ghellinck, G., andVial, J. P.,An Extension of Karmarkar's Algorithm for Solving a System of Linear Homogeneous Equations on the Simplex, Mathematical Programming, Vol. 39, pp. 79–92, 1987.Google Scholar
  13. 13.
    de Ghellinck, G., andVial, J. P.,A Polynomial Newton Method for Linear Programming, Algorithmica, Vol. 1, pp. 425–453, 1986.Google Scholar
  14. 14.
    Gay, D. A.,A Variant of Karmarkar's Linear Programming Algorithm for Problems in Standard Form, Mathematical Programming, Vol. 37, pp. 81–90, 1987.Google Scholar
  15. 15.
    Gonzaga, C.,An Algorithm for Solving Linear Programs in O(n 3 L) Operations, Progress in Mathematical Programming: Interior-Points and Related Methods, Edited by N. Megiddo, Springer-Verlag, pp. 1–28, 1989.Google Scholar
  16. 16.
    Gonzaga, C.,Conical Projection Algorithm for Linear Programming, Mathematical Programming, Vol. 43, pp. 151–173, 1988.Google Scholar
  17. 17.
    Todd, M. J., andBurrell, B. P.,An Extension of Karmarkar's Algorithm for Linear Programming Using Dual Variables, Algorithmica, Vol. 1, pp. 409–424, 1986.Google Scholar
  18. 18.
    Ye, Y., andKojima, M.,Recovering Optimal Dual Solutions in Karmarkar's Polynomial Algorithm for Linear Programming, Mathematical Programming, Vol. 39, pp. 305–317, 1987.Google Scholar
  19. 19.
    Freund, R. M.,An Analog of Karmarkar's Algorithm for Inequality Constrained Linear Programming, with a New Class of Projective Transformations for Centering a Polytope, Operations Research Letters, Vol. 7, pp. 9–13, 1988.Google Scholar
  20. 20.
    Gay, D. A.,Pictures of Karmarkar's Linear Programming Algorithm for Problems in Standard Form, Computing Science Technical Report No. 136, AT&T Bell Laboratories, Murray Hill, New Jersey, 1987.Google Scholar
  21. 21.
    Vial, J. P.,A Unified Approach to Projective Algorithms for Linear Programming, Optimization, Edited by S. Dolecki, Lecture Notes in Mathematics, Vol. 1405, Springer-Verlag, pp. 191–220, 1989.Google Scholar
  22. 22.
    Yamashita, H.,A Polynomially and Quadratically Convergent Method for Linear Programming, Unpublished Manuscript, Mathematical Systems Institute, Shinjuku-Ku, Tokyo, Japan, 1986.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • J. L. Goffin
    • 1
  • J. P. Vial
    • 2
  1. 1.McGill UniversityMontrealCanada
  2. 2.University of GenevaGenevaSwitzerland

Personalised recommendations