Advertisement

Nonmonotone line search for minimax problems

  • J. L. Zhou
  • A. L. Tits
Contributed Papers

Abstract

It was recently shown that, in the solution of smooth constrained optimization problems by sequential quadratic programming (SQP), the Maratos effect can be prevented by means of a certain nonmonotone (more precisely, three-step or four-step monotone) line search. Using a well-known transformation, this scheme can be readily extended to the case of minimax problems. It turns out however that, due to the structure of these problems, one can use a simpler scheme. Such a scheme is proposed and analyzed in this paper. Numerical experiments indicate a significant advantage of the proposed line search over the Armijo search.

Key Words

Minimax problems SQP directions Maratos effect superlinear convergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Polyak, R. A.,Smooth Optimization Methods for Minimax Problems, SIAM Journal on Control and Optimization, Vol. 26, pp. 1274–1286, 1988.Google Scholar
  2. 2.
    Polak, E., Mayne, D. Q., andHiggins, J. E.,A Superlinearly Convergent Algorithm for Minmax Problems, Proceedings of the 28th IEEE Conference on Decision and Control, Tampa, Florida, Vol. 1, pp. 894–898, 1989.Google Scholar
  3. 3.
    Conn, A. R., andLi, Y.,An Efficient Algorithm for Nonlinear Minimax Problems, Report CS-88-41, University of Waterloo, Waterloo, Ontario, Canada, 1989.Google Scholar
  4. 4.
    Han, S. P.,Superlinear Convergence of a Minimax Method, Report TR-78-336, Department of Computer Science, Cornell University, Ithaca, New York, 1978.Google Scholar
  5. 5.
    Han, S. P.,Variable Metric Methods for Minimizing a Class of Nondifferentiable Functions, Mathematical Programming, Vol. 20, pp. 1–13, 1981.Google Scholar
  6. 6.
    Conn, A. R.,An Efficient Second-Order Method to Solve the Constrained Minimax Problem, Report CORR-79-5, Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada, 1979.Google Scholar
  7. 7.
    Murray, A. W., andOverton, M. L.,A Projected Lagrangian Algorithm for Nonlinear Minimax Optimization, SIAM Journal on Scientific and Statistical Computing, Vol. 1, pp. 345–370, 1980.Google Scholar
  8. 8.
    Overton, M. L., Algorithms for Nonlinear l1 and475-1, Nonlinear Optimization 1981, Edited by M. J. D. Powell, Academic Press, London, England, pp. 213–221, 1982.Google Scholar
  9. 9.
    Womersley, R. S., andFletcher, R.,An Algorithm for Composite Nonsmooth Optimization Problems, Journal of Optimization Theory and Applications, Vol. 48, pp. 493–523, 1986.Google Scholar
  10. 10.
    Chamberlain, R. M., Powell, M. J. D., Lemarechal, C., andPedersen, H. C.,The Watchdog Technique for Forcing Convergence in Algorithms for Constrained Optimization, Mathematical Programming Study, Vol. 16, pp. 1–17, 1982.Google Scholar
  11. 11.
    Fletcher, R.,Second-Order Corrections for Nondifferentiable Optimization, Lecture Notes in Mathematics, Edited by G. A. Watson, Springer-Verlag, Berlin, Germany, Vol. 912, pp. 85–114, 1981.Google Scholar
  12. 12.
    Mayne, D. Q., andPolak, E.,A Superlinearly Convergent Algorithm for Constrained Optimization Problems, Mathematical Programming Study, Vol. 16, pp. 45–61, 1982.Google Scholar
  13. 13.
    Grippo, L., Lampariello, F., andLucidi, S.,A Nonmonotone Line Search Technique for Newton's Method, SIAM Journal on Numerical Analysis, Vol. 23, pp. 707–716, 1986.Google Scholar
  14. 14.
    Panier, E. R., andTits, A. L.,Avoiding the Maratos Effect by Means of a Nonmonotone Line Search, Part 1: General Constrained Problems, SIAM Journal on Numerical Analysis, Vol. 28, pp. 1183–1195, 1991.Google Scholar
  15. 15.
    Bonnans, J. F., Panier, E. R., Tits, A. L., andZhou, J. L.,Avoiding the Maratos Effect by Means of a Nonmonotone Line Search, Part 2: Inequality Constrained Problems—Feasible Iterates, SIAM Journal on Numerical Analysis, Vol. 29, pp. 1187–1202, 1992.Google Scholar
  16. 16.
    Panier, E. R., andTits, A. L.,A Superlinearly Convergent Method of Feasible Directions for Optimization Problems Arising in the Design of Engineering Systems, Lecture Notes in Control and Information Sciences, Edited by A. Bensoussan and J. L. Lions, Springer-Verlag, Berlin, Germany, Vol. 83, pp. 65–73, 1986.Google Scholar
  17. 17.
    Powell, M. J. D.,A Fast Algorithm for Nonlinearly Constrained Optimization Calculations, Lecture Notes in Mathematics, Edited by G. A. Watson, Springer-Verlag, Berlin, Germany, Vol. 630, pp. 144–157, 1978.Google Scholar
  18. 18.
    Powell, M. J. D.,The Convergence of Variable Metric Methods for Nonlinearly Constrained Optimization Calculations, Nonlinear Programming 3, Edited by O. L. Mangasarian, R. R. Meyer, S. M. Robinson, Academic Press, New York, New York, pp. 27–63, 1978.Google Scholar
  19. 19.
    Stoer, J.,The Convergence of Sequential Quadratic Programming Methods for Solving Nonlinear Programs, Recent Advances in Communication and Control Theory, Edited by R. E. Kalman, G. I. Marchuk, A. E. Ruberti, and A. J. Viterbi, Optimization Software, New York, New York, pp. 412–421, 1987.Google Scholar
  20. 20.
    Zhou, J. L., andTits, A. L.,User's Guide for FSQP Version 2.4—A Fortran Code for Solving Optimization Problems, Possibly Minimax, with General Inequality Constraints and Linear Equality Constraints, Generating Feasible Iterates, Report TR-90-60, Systems Research Center, University of Maryland, College Park, Maryland, 1991.Google Scholar
  21. 21.
    Watson, G. A.,The Minimax Solution of an Overdetermined System of Nonlinear Equations, Journal of the Institute for Mathematics and Its Applications, Vol. 23, pp. 167–180, 1979.Google Scholar
  22. 22.
    Charalambous, C., andConn, A. R.,An Efficient Method to Solve the Minimax problem Directly, SIAM Journal on Numerical Analysis, Vol. 15, pp. 162–187, 1978.Google Scholar
  23. 23.
    Madsen, K., andSchjaer-Jacobsen, H.,Linearly Constrained Minimax Optimization, Mathematical Programming, Vol. 14, pp. 208–223, 1978.Google Scholar
  24. 24.
    Hock, W., andSchittkowski, K.,Test Examples for Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, Berlin, Germany, Vol. 187, 1981.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • J. L. Zhou
    • 1
  • A. L. Tits
    • 1
  1. 1.Electrical Engineering Department and Institute for Systems ResearchUniversity of MarylandCollege Park

Personalised recommendations