Applied Microbiology and Biotechnology

, Volume 29, Issue 2–3, pp 282–288 | Cite as

Levels of pentose phosphate pathway enzymes fromCandida shehatae grown in continuous culture

  • M. A. Alexander
  • V. W. Yang
  • T. W. Jeffries
Applied Microbiology


Candida shehatae exhibits different fermentative capacities when grown under different aeration conditions. These studies investigated the titers of xylose reductase, xylitol dehydrogenase, glucose-6-phosphate dehydrogenase and alcohol dehydrogenase in crude extracts ofCandida shehatae grown in continuous culture with various specific aeration rates. Carbon source, aeration rate, dilution rate and temperature were examined as variables. Xylose reductase and xylitol dehydrogenase were induced by xylose and were largely absent in glucose-grown cells. Alcohol dehydrogenae levels were higher in glucose-grown cells than in xylose-grown cells. The levels of this enzyme also correlated with the fermentative character of metabolism, having a low value under fully aerobic conditions, a high value under anaerobic conditions, and intermediate levels under various semi-aerobic conditions. Temperature had no effect on any enzyme level over the range of 20–30°C.


Xylose Candida Xylitol Alcohol Dehydrogenase Dilution Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander MA, Chapman TW, Jeffries TW (1987) Continuous ethanol production fromd-xylose byCandida shehatae. Biotechnol Bioeng 30:685–691Google Scholar
  2. 2.
    Alexander MA, Chapman TW, Jeffries TW (1988a) Xylose metabolism byCandida shehatae in continuous culture. Appl Microbiol Biotechnol 28:478–486Google Scholar
  3. 3.
    Alexander MA, Chapman TW, Jeffries TW (1988b) Continuous xylose fermentation byCandida shehatae in a two stage reactor. Appl Biochem Biotechnol 17:221–229Google Scholar
  4. 4.
    Bolen PL, Bietz JA, Detroy RW (1985) Aldose reductase in the yeastPachysolen tannophilus: purification, characterization and N-terminal sequence. Biotechnol Bioeng Symp 15:129–148Google Scholar
  5. 5.
    Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–292Google Scholar
  6. 6.
    Bruinenberg PM, de Bot PHM, van Dijken JP, Scheffers WA (1983a) The role of redox balances in the anaerobic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 18:287–292Google Scholar
  7. 7.
    Bruinenberg PM, van Dijken JP, Scheffers WA (1983b) A theoretical analysis of NADPH production and consumption by yeasts. J Gen Microbiol 129:953–964Google Scholar
  8. 8.
    Bruinenberg PM, de Bot PHM, van Dijken JP, Scheffers WA (1984) NADH-linked aldose reductase: the key to anaerobic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 19:256–269Google Scholar
  9. 9.
    Bruinenberg PM (1986) The NADP(H) redox couple in yeast metabolism. Antonie van Leeuwenhoek 52:411–429Google Scholar
  10. 10.
    Chakravorty M, Veiga LA, Bacila M,, Horecker BL (1962) Pentose metabolism inCandida: II The diphosphoryridine nucleotide-specific polyol dehydrogenase ofCandida utilis. J Biol Chem 237:1014–1020Google Scholar
  11. 11.
    Chiang C, Knight SG (1966)d-Xylose reductase andd-xylitol dehydrogenase fromPenicillium chrysogenum. Meth Enzymol 9:188–193Google Scholar
  12. 12.
    Ciriacy M (1975) Genetics of alcohol dehydrogenase inSaccharomyces cerevisiae I Isolation and genetic analysis ofadh mutants. Mut Res 29:315–326Google Scholar
  13. 13.
    van Dijken JP, Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Rev 32:199–224Google Scholar
  14. 14.
    Dietzelmüller G, Kubicek-Pranz EM, Röhr M, Kubicek CP (1985) NADPH-specific and NADH-specific xylose reductase is catalyzed by two separate enzymes inPachysolen tannophilus. Appl Microbiol Biotechnol 22:297–299Google Scholar
  15. 15.
    du Preez J, Prior B, Monteiro A (1984) The effect of aeration on xylose fermentation byCandida shehatae andPachysolen tannophilus. Appl Microbiol Biotechnol 19:261–266Google Scholar
  16. 16.
    du Preez J, van der Walt (1983) Fermenation ofd-xylose to ethanol by a strain ofCandida shehatae. Biotech Lett 5:357–362Google Scholar
  17. 17.
    Jeffries TW (1982) A comparison ofCandida tropicalis andPachysolen tannophilus for conversion of xylose to ethanol. Biotechnol Bioeng Symp 12:103–110Google Scholar
  18. 18.
    Kuby SA, Noltmann EA (1966) Glucose-6-phosphate dehydrogenase (crystalline) from brewer's yeast. Meth Enzymol 9:116–125Google Scholar
  19. 19.
    Lachke AH, Jeffries TW (1986) Levels of enzymes of the pentose phosphate pathway inPachysolen tannophilus Y-2460 and selected mutants. Enzyme Microb Technol 8:353–359Google Scholar
  20. 20.
    Mahmourides G, Lee H, Maki N, Schneider H (1985) Ethanol accumulation in cultures ofPachysolen tannophilus ond-xylose is associated with a transition to a state of low oxygen consumption. Biotechnology 3:59–62Google Scholar
  21. 21.
    Maleszka R, Wang PY, Schneider H (1982) Ethanol production fromd-galactose and glycerol byPachysolen tannophilus. Enz Microb Technol 4:349–352Google Scholar
  22. 22.
    Neirinck LG, Maleszka R, Schneider H (1984) The requirement of oxygen for incorporation of carbon fromd-xylose andd-glucose byPachysolen tannophilus. Arch Biochem Biophys 228:13–21Google Scholar
  23. 23.
    Prior BA, Alexander MA, Yang V, Jeffries TW (1988) The role of alcohol dehydrogenase in the fermentation ofd-xylose byCandida shehatae ATCC 22984. Biotechnol Lett 10(1):37–42Google Scholar
  24. 24.
    Sreenath HK, Chapman TW, Jeffries TW (1986) Ethanol production fromd-xylose in batch fermentations withCandida shehatae: process variables. Appl Microbiol Biotechnol 24:294–299Google Scholar
  25. 25.
    Scher BM, Horecker BL (1966) Pentose metabolism inCandida III. The triphosphopyridine nucleotide-specific polyol dehydrogenase ofCanadida utilis.. Arch Biochem Biophys 116:117–128Google Scholar
  26. 26.
    Sheys GR, Arnold WJ, Watson JA, Hyashi JA, Doughty CC (1971) Aldose reductase fromRhodotorula. J Biol Chem 246:3824–3827Google Scholar
  27. 27.
    Suzuki T, Onishi H (1975) Purification and properties of polyol: NADP oxidoreductase fromPichia quercuum. Agr Biol Chem 39:2389–2397Google Scholar
  28. 28.
    Vallee BL, Hoch FL (1955) Zinc, a component of yeast alcohol dehydrogenase. Proc Nat Acad Sci USA 41:327–338Google Scholar
  29. 29.
    Verduyn C, Frank J, van Dijken JP, Scheffers WA (1985a) Multiple forms of xylose reductase inPachysolen tannophilus CBS 4044. FEMS Microbiol Lett 30:313–317Google Scholar
  30. 30.
    Verduyn C, van Kleef R, Frank J, Schreuder H, van Dijken JP, Scheffers WA (1985b) Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeastPichia stipitis. Biochem J 226:669–677Google Scholar
  31. 31.
    Wayman M, Tsuyuki (1985) Fermentation of xylose to ethanol byCandida shehatae. Biotechnol Bioengineer Symp 15:168–177Google Scholar
  32. 32.
    Wills C, Phelps J (1975) A technique for the isolation of yeast alcohol dehydrogenase mutants with altered substrate specificity. Arch Biochem Biophys 167:627–637Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • M. A. Alexander
    • 1
  • V. W. Yang
    • 2
  • T. W. Jeffries
    • 2
  1. 1.Department of Chemical EngineeringUniversity of WisconsinMadisonUSA
  2. 2.Institute for Microbial and Biochemical TechnologyForest Products LaboratoryMadisonUSA

Personalised recommendations