Applied Physics A

, Volume 46, Issue 3, pp 221–227 | Cite as

The radiation hardness property of dry oxide grown by postoxidation cooling in oxygen ambient

  • Jenn-Gwo Hwu
  • Shyh-Liang Fu
Surfaces, Interfaces, and Layer Structures

Abstract

The radiation behavior of silicon oxides prepared under various postoxidation conditions is studied by60CO irradiation with a total dose of 106 rad. Before irradiation, it was shown that the sample obtained by postoxidation cooling in N2+O2 exhibited more positive initial oxide charges and larger negative charge-temperature instability than that obtained by postoxidation annealing in N2. But after considering the initial oxide field effect on the irradiation result, the former one is less sensitive to irradiation than the latter one. Surprisingly, this hardness ability is significantly enhanced when the orientation of silicon substrate is gradually tilted from [100] to [O11]. Possible explanations are given for these observations. It is supposed that the postoxidation cooling in N2+O2 provides a possible way for the oxide to become more radiation hard.

PACS

73 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.H. Nicollian, J.R. Brews:MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York 1982)Google Scholar
  2. 2.
    G.F. Derbenwick, B.L. Gregory: IEEE Trans. NS-22, 2151 (1975)Google Scholar
  3. 3.
    A.G. Revesz: IEEE Trans. NS-24, 2102 (1977)Google Scholar
  4. 4.
    Z. Shanfield, M.M. Moriwaki: IEEE Trans. NS-31, 1242 (1984)Google Scholar
  5. 5.
    Z. Shanfield, M.M. Moriwaki: IEEE Trans. NS-32, 3929 (1985)Google Scholar
  6. 6.
    F.J. Grunthaner, B.F. Lewis, J. Maserjian: IEEE Trans. NS-27, 1640 (1980)Google Scholar
  7. 7.
    F.J. Grunthaner, B.F. Lewis, J. Maserjian: J. Vac. Sci. Technol.20, 747 (1982)Google Scholar
  8. 8.
    A. Goetzberger, J.C. Irvin: IEEE Trans. ED-15, 1009 (1968)Google Scholar
  9. 9.
    A.K. Sinha, H.J. Levinstein, L.P. Adda, E.N. Fuls, E.I. Povilonis: Solid State Electron.21, 531 (1978)Google Scholar
  10. 10.
    B.E. Deal, M. Sklar, A.S. Grove, E.H. Snow: J. Electrochem. Soc.114, 266 (1967)Google Scholar
  11. 11.
    K.O. Jeppson, C.M. Svensson: J. Appl. Phys.48, 2004 (1977)Google Scholar
  12. 12.
    S.K. Haywood, R.F. Dekeersmaecker: Appl. Phys. Lett.47, 381 (1985)Google Scholar
  13. 13.
    J.G. Hwu, W.S. Wang: Appl. Phys. A40, 41 (1986)Google Scholar
  14. 14.
    J.G. Hwu, C.M. Lin, W.S. Wang: Thin Solid Films142, 183 (1986)Google Scholar
  15. 15.
    S.M. Sze:Physics of Semiconductor Devices (Wiley, New York 1981)Google Scholar
  16. 16.
    B.E. Deal: J. Electrochem. Soc.121, 198C (1974)Google Scholar
  17. 17.
    J.M. Benedetto, H.E. Boesch, F.B. Mclean, J.P. Mize: IEEE Trans. NS-32, 3916 (1985)Google Scholar
  18. 18.
    M. Hamasaki: Solid State Electron.25, 205 (1982)Google Scholar
  19. 19.
    H.Z. Massoud, J.D. Plummer, E.A. Irene: J. Electrochem. Soc.132, 2685 (1985)Google Scholar
  20. 20.
    K. Suzuki, M. Sakagami, E. Nishimura, K. Watanable: IEEE Trans. NS-32, 3911 (1985)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Jenn-Gwo Hwu
    • 1
  • Shyh-Liang Fu
    • 1
  1. 1.Department of Electrical EngineeringNational Taiwan UniversityTaipeiTaiwan, Republic of China

Personalised recommendations