Applied Microbiology and Biotechnology

, Volume 41, Issue 4, pp 378–383 | Cite as

Microbial production of propionic acid and vitamin B12 using molasses or sugar

  • A. Quesada-Chanto
  • A. S.-Afschar
  • F. Wagner
Biotechnology Original Paper

Abstract

With a cell concentration of 125 g dry biomass 1−1 and a dilution rate of 0.1 h−1,Propionibacterium acidipropionici produces 30 g propionic acid 1−1 from sugar with a productivity of 3 g 1−1 h−1. The yield of propionic acid is approx. 0.36–0.45 g propionic acid g−1 sucrose and is independent of the dilution rate and cell concentration. Acetic acid is an unwanted by-product in the production of propionic acid. The concentration of acetic acid only increases slightly when the cell concentration is increased. A two-stage fermentation process was developed for the conversion of sugar or molasses of various types to propionic acid and vitamin B12. By fermentation of blackstrap molasses (from sugar beet and sugar cane) in the first fermentation stage 17.7 g propionic acid 1−1 with a yield of 0.5 g propionic acid g−1 carbohydrate was produced with a dilution rate of 0.25 h−1. In the second stage 49 mg vitamin B12 1−1 was produced at a dilution rate of 0.03 h−1.

Keywords

Biomass Sugar Sucrose Fermentation Acetic Acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afschar AS, Biebl H, Schaller K, Schügerl K (1985) Production of acetone and butanol byClostridium acetobutylicum in continuous culture with cell recycle. Appl Microbiol Biotechnol 22:394–398Google Scholar
  2. Afschar AS, Quesada-Chanto A (1994) German patent application no. 94102622.1Google Scholar
  3. Blanc P, Goma G (1987) Propionic acid fermentation: improvement of performances by coupling continuous fermentation and ultrafiltration. Bioprocess Eng 2: 137–139Google Scholar
  4. Blanc P, Goma G (1989) Propionic acid and biomass production using continuous ultrafiltration fermentation of whey. Biotechnol Lett 11: 189–194Google Scholar
  5. Boyaval P, Corre C (1987) Continuous fermentation of sweet whey permeate for propionic acid production in a CSTR with UF recycle. Biotechnol Lett 9:801–806Google Scholar
  6. Crespo JPSG, Xavier AMRB, Barreto MTO, Goncalves LMD, Almeida JS, Corrondo MJT (1992) Tangential flow filtration for continuous cell recycle culture of acidogenic bacteria. Chem Eng Sci 47:205–214Google Scholar
  7. Hammer G (1982) Recycle in fermentation processes. Biotechnol Bioeng 24:511Google Scholar
  8. Karel SF, Libicki SB, Robertson CR (1985) The immobilization of whole cells: engineering principles. Chem Eng Sci 40:1321Google Scholar
  9. Mazumder TK, Nishio N, Fukuzaki S, Nagai S (1987) Production of extracellular vitamin B12 compounds from methanol byMethanosarcina barkeri. Appl Microbiol Biotechnol 26:511–516Google Scholar
  10. Perlman D (1962) U.S. parent no. 3021262Google Scholar
  11. Quesada-Chanto A, Afschar AS, Wagner F (1994) Optimization ofPropionibacterium acidipropionici continuous culture utilizing sucrose. Appl Microbiol Biotechnol in pressGoogle Scholar
  12. Skeggs HR (1967) Vitamin B12. In: György P, Pearson WN (eds) The vitamins — chemistry, physiology, pathology, methods, vol 7. Academic Press, New York pp 277–301Google Scholar
  13. Wagner F, Pfeiffer H, Rapp P (1967) Statische und kontinuierliche Kultur von Propionibakterien. Zentralbl Bakteriol Abt I Suppl 85–89Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • A. Quesada-Chanto
    • 1
  • A. S.-Afschar
    • 1
  • F. Wagner
    • 2
  1. 1.GBF — Gessellschaft für Biotechnologische Forschung mbHBraunschweigGermany
  2. 2.Institut für Biochemie und BiotechnologieTechnical University of BraunschweigBraunschweigGermany

Personalised recommendations