Time-domain optimization of input signals for distributed-parameter systems identification

  • E. Rafajłowicz
Contributed Papers

Abstract

The problem of the optimum signal choice for the purpose of distributed-parameter systems identification is considered. In contrast to earlier contributions to this topic, the time-domain approach leads to a nonconvex optimization problem. This difficulty is overcome by introducing an auxiliary convex problem, which is proved to have the same solution as the initial one. This approach allows one to obtain necessary and sufficient optimality conditions for the initial problem, which are then used to find analytical solutions for a wide class of systems. The so-calledD-Optimality criterion is used here, together with constraints on the signal energy.

Key Words

Distributed control problems identification D-optimality criterion optimality conditions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goodwin, G. C., andPayne, R. L.,Dynamic System Identification: Experiment Design and Data Analysis, Academic Press, New York, New York, 1971.Google Scholar
  2. 2.
    Kalaba, R. E., andSpingarn, K.,Optimal Inputs for Nonlinear Process Parameter Estimation, IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-10, pp. 339–343, 1979.Google Scholar
  3. 3.
    Kalaba, R. E., andSpingarn, K.,Control, Identification, and Input Optimization, Plenum Press, New York, New York, 1982.Google Scholar
  4. 4.
    Mehra, R. K.,Optimal Input Signals for Parameter Estimation in Dynamic Systems-Survey and New Results, IEEE Transactions on Automatic Control, Vol. AC-19, pp. 753–768, 1974.Google Scholar
  5. 5.
    Zarrop, M. B.,Optimal Experiment Design for Dynamic System Identification, Springer-Verlag, Berlin, Germany, 1979.Google Scholar
  6. 6.
    Kuszta, B., andSinha, N. K.,Design of Optimal Input Signals for the Identification of Distributed-Parameter Systems, International Journal of Systems Science, Vol. 9, pp. 1–7, 1978.Google Scholar
  7. 7.
    Rafajłowicz, E.,Optimal Input Signals for Parameter Estimation in Linear Distributed-Parameter Systems, International Journal of Systems Science, Vol. 13, pp. 799–808, 1982.Google Scholar
  8. 8.
    Rafajłowicz, E.,Optimal Experiment Design for Identification of Linear Distributed-Parameter Systems, IEEE Transactions on Automatic Control, Vol. AC-28, pp. 806–808, 1983.Google Scholar
  9. 9.
    Rafajłowicz, E.,Optimum Experiment Design for Parameter Identification in Distributed Systems: Brief Survey and New Results, Proceedings of the 9th IFAC World Congress, Budapest, Hungary, Vol. 10, 1984.Google Scholar
  10. 10.
    Rafajłowicz, E., andMyszka, W.,Computational Algorithm for Input Signal Optimization in Distributed-Parameter Systems Identification, International Journal of Systems Science, Vol. 17, pp. 911–924, 1986.Google Scholar
  11. 11.
    Fedorov, V. V.,Theory of Optimal Experiments, Academic Press, New York, New York, 1971.Google Scholar
  12. 12.
    Fedorov, V. V.,Convex Design Theory, Mathematische Operationsforschung und Statistik, Seria Statistics, Vol. 11, pp. 403–413, 1980.Google Scholar
  13. 13.
    Kiefer, J., andWolfowitz, J.,The Equivalence of Two Extremum Problems, Canadian Journal of Mathematics, Vol. 12, pp. 363–366, 1960.Google Scholar
  14. 14.
    Kiefer, J.,General Equivalence Theory for Optimum Designs: Approximate Theory, Annals of Statistics, Vol. 2, pp. 849–879, 1974.Google Scholar
  15. 15.
    Pazman, A.,Foundations of Optimum Experimental Design, D. Reidel, Dordrecht, The Netherlands, 1986.Google Scholar
  16. 16.
    Yosida, K.,Functional Analysis, Springer-Verlag, Berlin, Germany, 1980.Google Scholar
  17. 17.
    Butkovskiy, A. G.,Green's Functions and Transfer Functions, Ellis Horwood, Chichester, England, 1982.Google Scholar
  18. 18.
    Hori, M.,Input-Output Relations for Systems Described by Parabolic Equations, International Journal of System Science, Vol. 9, pp. 773–784, 1978.Google Scholar
  19. 19.
    Butkovskiy, A. G.,Structural Theory of Distributed Systems, Ellis Horwood, Chichester, England, 1983.Google Scholar
  20. 20.
    Kubrusly, C. S.,Distributed-Parameter System Identification: A Survey, International Journal of Control, Vol. 26, pp. 509–535, 1977.Google Scholar
  21. 21.
    Polis, M. P., andGoodson, R. E.,Parameter Identification in Distributed Systems: A Synthesising Overview. Proceedings of IEEE, Vol. 64, pp. 43–61, 1976.Google Scholar
  22. 22.
    Polis, M. P.,The Distributed System Parameter Identification Problem: A Survey of Recent Results. Proceedings of the 3rd IFAC Symposium on Control of Distributed-Parameter Systems, Toulouse, France, pp. 45–58, 1982.Google Scholar
  23. 23.
    Tzafestas, S. G., andStavroulakis, P.,Recent Advances in the Study of Distributed-Parameter Systems, Journal of the Franklin Institute, Vol. 315, pp. 285–305, 1983.Google Scholar
  24. 24.
    Amouroux, M., Burger, J. andCourdesses, M.,Estimation dans les Systèmes a Paramètres Repartis, RAIRO Automatique/Systems Analysis and Control, Vol. 18, pp. 109–129, 1984.Google Scholar
  25. 25.
    Banks, H. T., andKunich, K.,An Approximation Theory for Nonlinear Partial Differential Equations with Applications to Identification and Control, SIAM Journal on Control and Optimization, Vol. 20, pp. 815–849, 1982.Google Scholar
  26. 26.
    Banks, H. T., Crowles, J. M., andKunisch, K.,Cubic Spline Approximation Techniques for Parameter Estimation in Distributed Systems, IEEE Transactions on Automatic Control, Vol. AC-28, pp. 773–786, 1983.Google Scholar
  27. 27.
    Banks, H. T., andMurphy, K. A.,Inverse Problems for Hyperbolic Systems with Unknown Boundary Parameters, Control Theory for Distributed-Parameter Systems and Applications, Edited by F. Kappel, K. Kunisch, and W. Schappcher, Springer-Verlag, Berlin, Germany, 1983.Google Scholar
  28. 28.
    Banks, H. T., andMurphy, K. A.,Estimation of Parameters in Nonlinear Distributed Systems, Proceedings of the 23rd Conference on Decision and Control, Las Vegas, Nevada, pp. 257–161, 1984.Google Scholar
  29. 29.
    Banks, H. T., andLamm, P. D.,Estimation of Variable Coefficients in Parabolic Distributed Systems, IEEE Transactions on Automatic Control, Vol. AC-30, pp. 386–398, 1985.Google Scholar
  30. 30.
    Chavent, G.,On Parameter Identificability, Proceedings of the IFAC Symposium on Identification and System Parameter Estimation, York, England, pp. 531–535, 1985.Google Scholar
  31. 31.
    Courdesses, M., Polis, M. P., andAmouroux, M.,On Identifiability of Parameters in a Class of Parabolic Distributed Systems, IEEE Transactions on Automatic Control, Vol. AC-26, pp. 474–477, 1981.Google Scholar
  32. 32.
    Crosta, G.,The Role of Duality in System Identificationn, Proceedings of the 23rd Conference on Decision and Control, Las Vegas, Nevada, pp. 252–256, 1984.Google Scholar
  33. 33.
    Guenther, R., Hudspeth, R., McDougal, W., andGerlach, J.,Remarks on Parameter Identification, I, Numerische Mathmatik, Vol. 47, pp. 355–361, 1985.Google Scholar
  34. 34.
    Hallager, L., Goldschmidt, L., andJorgensen, S. B.,Multivariable Adaptive Identification and Control of a Distributed Chemical Reactor, Large-Scale Systems Theory and Its Applications, Vol. 6, pp. 323–336, 1984.Google Scholar
  35. 35.
    Kojima, F., Sunahara, Y., andAihara, S.,Parameter Estimation for Distributed Systems with Obstacle under Noisy Observations, Proceedings of the IFAC Symposium on Identification and System Parameter Estimation, York, England, pp. 781–786, 1985.Google Scholar
  36. 36.
    Kravaris, C., andSeinfeld, J. H.,Identification of Parameters in Distributed-Parameter Systems by Regularization, SIAM Journal on Control and Optimization, Vol. 23, pp. 217–241, 1985.Google Scholar
  37. 37.
    Sacks, P., andSymes, W.,Uniqueness and Continuous Dependence for a Multidimensional Hyperbolic Inverse Problem, Communications in Partial Differential Equations, Vol. 10, pp. 635–676, 1985.Google Scholar
  38. 38.
    Sehitoglu, H.,Real-Time Parameter Identification in a Class of Distributed Systems Using Lyapunov Design Method, Parts 1 and 2, International Journal on Control, Vol. 38, pp. 747–756, 1987 and Vol. 38, pp. 757–767, 1987.Google Scholar
  39. 39.
    Suzuki, T.,Uniqueness and Nonuniqueness in an Inverse Problem for the Parabolic Equation, Journal of Differential Equations, Vol. 47, pp. 296–316, 1983.Google Scholar
  40. 40.
    Udwadia, P. E., andGarba, J. A.,Some Aspects of the Identification of Continuous Vibrating Systems, Proceedings of the 3rd IFAC Symposium on Control of Distributed-Parameter Systems, Toulouse, France, pp. 527–534, 1982.Google Scholar
  41. 41.
    Van Trees, H. L.,Detection, Estimation, and Modulation Theory, Part 1, Wiley, New York, New York, 1968.Google Scholar
  42. 43.
    Balakrishnan, A. V.,Applied Functional Analysis, Springer-Verlag, Berlin, Germany, 1976.Google Scholar
  43. 44.
    Nakagiri, S.,Identificability of Linear Systems in Hilbert Space, SIAM Journal on Control and Optimization, Vol. 21, pp. 501–530, 1983.Google Scholar
  44. 45.
    Qureshi, Z. H., Ng, T. S., andGoodwin, G. C.,Optimum Experimental Design for Identification of Distributed-Parameter Systems, International Journal of Control, Vol. 31, pp. 21–29, 1980.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • E. Rafajłowicz
    • 1
  1. 1.Institute of Engineering CyberneticsTechnical University of WrocławWrocławPoland

Personalised recommendations