Monatshefte für Chemie / Chemical Monthly

, Volume 111, Issue 1, pp 63–79 | Cite as

Transition metal chemistry of oxime containing ligands, VII

Electronic and structural properties of iron(II) and chromium(III) complexes containing pyridine-2-aldoxime
  • Madan Mohan
  • Shri G. Mittal
  • Harish C. Khera
  • Anant K. Sirivastava
Inorganic, Structural, and Physical Chemistry


Complexes of pyridine-2-aldoxime (Hpox) with iron(II) and chromium(III) of type, [Fe(Hpox)2X2] (X=Cl, Br, I or NCS); [Cr(Hpox)3]Cl3·3 H2O; [Cr(Hpox)2X2]ClO4 (X=F, Cl or Br) and [Cr(Hpox)2(H2O)2]Br3·H2O were prepared and characterized by analytical X-ray powder diffraction, magnetism, vibrational (conventional and far-infrared) and electronic spectroscopy techniques. X-ray and electronic spectral data indicate that all the complexes except [Cr(Hpox)3]Cl3·3 H2O havetrans-pseudo-octahedral microsymmetry around the metal ion. Infrared spectral data indicate that the ligand, Hpox, behaves like a neutral ligand and coordinates to the metal ion through pyridine nitrogen atom and oxime nitrogen atom in all these complexes. The magnetic susceptibilities of chromium(III) complexes, measured over a temperature range 300–78 K, are independent of temperature whereas the magnetic moments of iron(II) complexes over a temperature range 300–20 K are dependent of temperature. The observed temperature dependence of magnetic moments of iron(II) complexes was used to evaluate the magnitude of orbital reduction factor,k, the low-symmetry distortion parameter, Δ, and the extent of reduction in spin-orbital coupling, λ. In all these iron(II) complexes the magnetic results indicate the presence of an orbitally non-degenerate,5B2g, ground state. Magnetically unperturbed and perturbedMössbauer spectra of iron(II) complexes at various temperatures have also been reported. Magnetically perturbedMössbauer spectra of iron(II) complexes at 4.2 K in an axial field of 60kGauss indicate that the principal component of electric field gradient tensor is positive and consistent with5B2g ground electronic state in a tetragonal (D4h) local site symmetry.


Chromium(III)complexes Iron(II)complexes Magnetic susceptibility measurements Mössbauer spectra 

Übergangsmetallkomplexe mit Oxim-enthaltenden Liganden, VII. Elektronische und strukturelle Eigenschaften vonFe(II)-undCr(III)-Komplexen mit Pyridin-2-aldoxim


Es wurden Komplexe von Pyridin-2-aldoxim (Hpox) mit Fe(II) und Cr(III) vom Typ [Fe(Hpox)2X2] (X=Cl, Br, I, NCS), [Cr(Hpox)3]Cl3·3 H2O, [Cr(Hpox)2X2]ClO4 (X=F, Cl, Br) und [Cr(Hpox)2(H2O)2]Br3·H2O hergestellt. Charakterisierung und Diskussion von Geometrie und Bindungsverhalten in den Komplexen erfolgte auf Grund von analytischen Daten, Röntgen-Pulveraufnahmen, Elektronenanregungsspektroskopie, Infrarotspektroskopie, magnetischen Messungen undMössbauer-Spektroskopie.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Less, F. Holmes, A. E. Underhill, andD. B. Powell, J. Chem. Soc.A 1971, 337.Google Scholar
  2. 2.
    F. Holmes, G. Lees, andA. E. Underhill, J. Chem. Soc.A 1971, 999.Google Scholar
  3. 3.
    M. Mohan, H. C. Khera, S. G. Mittal, andA. K. Sirivastava, Acta Chim. (Hung.)91, 417 (1976).Google Scholar
  4. 4.
    M. Mohan, H. C. Khera, S. G. Mittal, andA. K. Sirivastava, Curr. Sci.46, 211 (1977).Google Scholar
  5. 5.
    M. Mohan, H. C. Khera, S. G. Mittal, andA. K. Sirivastava, Indian J. Chem.15 A, 696 (1977).Google Scholar
  6. 6.
    M. Mohan, S. G. Mittal, H. C. Khera, andA. K. Sirivastava, Gazz. Chim. Italiana107, 393 (1977).Google Scholar
  7. 7.
    M. Mohan, S. G. Mittal, H. C. Khera, andA. K. Sirivastava, Gazz. Chim. Italiana108, 585 (1978).Google Scholar
  8. 8.
    M. Mohan, S. G. Mittal, H. C. Khera, andA. K. Sirivastava, Mh. Chem.109, 357 (1978).Google Scholar
  9. 9.
    G. Brauer, Handbook of Preparative Inorganic Chemistry,2, 1359. New York: Academic Press. 1963.Google Scholar
  10. 10.
    F. J. Welcher, The Analytical uses of E.D.T.A. Van Nostrand Company, Inc. 1965.Google Scholar
  11. 11.
    I. Sotofte andS. E. Rasmussen, Acta Chem. Scand.21, 2028 (1967).Google Scholar
  12. 12.
    R. A. Krause, N. B. Colthup, andD. H. Busch, J. Phys. Chem.65, 2216 (1961).Google Scholar
  13. 13.
    R. E. Rundle andM. Parasol, J. Chem. Phys.20, 1487 (1952).Google Scholar
  14. 14.
    A. Fujita, A. Nakahara, andR. Tsuchida, J. Chem. Phys.23, 1541 (1955).Google Scholar
  15. 15.
    P. E. Figgins andD. H. Busch, J. Phys. Chem.65, 2236 (1961).Google Scholar
  16. 16.
    S. P. Sinha, Spectrochim Acta20, 879 (1964).Google Scholar
  17. 17.
    J. H. S. Green, W. Kynaston, andH. M. Paisley, Spectrochim Acta19, 549 (1963).Google Scholar
  18. 18.
    N. S. Gill andH. J. Kingdon, Aust. J. Chem.19, 2197 (1966).Google Scholar
  19. 19.
    G. Zerbi, J. Overend, andB. Grawford, J. Chem. Phys.38, 122 (1963).Google Scholar
  20. 20.
    N. S. Gill, R. H. Nuttall, D. E. Scaife, andD. W. A. Sharp, J. Inorg. Nucl. Chem.18, 79 (1961).Google Scholar
  21. 21.
    J. L. Burmeister, Coordn. Chem. Rev.1, 205 (1966);3, 225 (1968).Google Scholar
  22. 22.
    B. J. Hathaway andA. E. Underhill, J. Chem. Soc.1961, 3091.Google Scholar
  23. 23.
    R. J. H. Clark andC. S. Williams, Inorg. Chem.4, 350 (1965).Google Scholar
  24. 24.
    C. W. Frank andL. B. Rogers, Inorg. Chem.5, 615 (1966).Google Scholar
  25. 25.
    J. Burgress, Spectrochim Acta24 A, 277 (1968).Google Scholar
  26. 26.
    R. J. H. Clark andC. S. Williams, Spectrochim Acta23 A, 1055 (1967).Google Scholar
  27. 27.
    R. G. Inskeep, J. Inorg. Nucl. Chem.24, 763 (1962).Google Scholar
  28. 28.
    B. N. Figgis, J. Lewis, F. E. Mabbs, andG. A. Webb, J. Chem. Soc.1967, 442.Google Scholar
  29. 29.
    C. D. Burbridge andD. M. L. Goodgame, J. Chem. Soc.A 1967, 694.Google Scholar
  30. 30.
    G. A. Renovitch andW. A. Baker, jr., J. Chem. Soc.A 1969, 75.Google Scholar
  31. 31.
    C. D. Burbridge, D. M. L. Goodgame, andM. Goodgame, J. Chem. Soc.A 1967, 349.Google Scholar
  32. 32.
    G. M. Bancroft andR. H. Platt, Advan. Inorg. Chem. Radiochem.15, 59 (1972).Google Scholar
  33. 33.
    D. S. McClure, Advances in the Chemistry of Coordination Compounds, p. 498 (S. Kirschner, ed.). New York: Macmillan. 1961.Google Scholar
  34. 34.
    A. B. P. Lever, Inorganic Electronic Spectroscopy, p. 205. Amsterdam: Elsevier. 1968.Google Scholar
  35. 35.
    A. B. P. Lever, Coordn. Chem. Reg.3, 119 (1968).Google Scholar
  36. 36.
    L. S. Forster, Transition Metal Chem.5, 1 (1969).Google Scholar
  37. 37.
    J. R. Perumareddi, Coordn. Chem. Rev.4, 73 (1969).Google Scholar
  38. 38.
    J. G. Lerup andC. E. Schaffer, Progress in Coordination Chemistry, p. 500 (M. Cais, ed.). Amsterdam: Elsevier. 1968.Google Scholar
  39. 39.
    H. Yamatera, Bull Chem. Soc. Japan31, 95 (1958).Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Madan Mohan
    • 1
  • Shri G. Mittal
    • 1
  • Harish C. Khera
    • 1
  • Anant K. Sirivastava
    • 1
  1. 1.Department of ChemistryN.R.E.C. CollegeKhurjaIndia

Personalised recommendations