Skip to main content
Log in

On the oxidation of iron in CO2 + CO mixtures. III: Coupled linear parabolic kinetics

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

High-purity iron has been oxidized at 1000–1200° C in CO2 and in CO2 + CO with different compositions and at different total gas pressures (0.1–1 atm.). The experimental work has comprised thermogravimetric reaction rate measurements and characterization of the wüstite scales by metallography and x-ray diffraction. The overall results have been analyzed in terms of a classical model for coupled linear/parabolic kinetics, where it is assumed that the surface of growing wüstite scales has exactly the same defect structure and defect concentrations as that of bulk wüstite equilibrated in the same gaseous atmospheres. Important discrepancies are found between the predicted and the experimentally observed reaction behavior. Thus, both the linear and parabolic rate constants are found to be dependent on the partial pressure of CO2 and the total gas pressure of the CO2 + CO gas mixtures, and furthermore, the reaction in CO2 + CO is slower than in O2 and in H2O + H2 with the same oxygen activity. In order to explain the experimental results, it is suggested that CO and CO2 molecules interact with the wüstite surface and thereby affect the defect structure and defect concentrations in a thin surface layer, and that this, in turn, affects both the linear and parabolic reaction rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Hauffe and H. Pfeiffer,Z. Metallk. 44, 27 (1953).

    Google Scholar 

  2. W. W. Smeltzer,Acta Met. 8, 377 (1960).

    Google Scholar 

  3. F. S. Pettit, R. Yinger, and J. B. Wagner, Jr.,Acta Met. 8, 617 (1960).

    Google Scholar 

  4. F. S. Pettit and J. B. Wagner, Jr.,Acta Met. 12, 35 (1964).

    Google Scholar 

  5. K. Hedden and G. Lehmann,Arch. Eisenhüttenwesen 35, 839 (1964).

    Google Scholar 

  6. L. A. Morris and W. W. Smeltzer,Acta Met. 15, 1591 (1967).

    Google Scholar 

  7. E. T. Turkdogan and J. V. Vinters,Met. Trans. 3, 1561 (1972).

    Google Scholar 

  8. S. M. El Rahgy, F. Jeannot, and C. Gleitzer,J. Mater. Sci. Lett. 13, 2510 (1978).

    Google Scholar 

  9. R. Bredesen and Per Kofstad,Oxid. Met. 34, 361 (1990).

    Google Scholar 

  10. R. Bredesen and Per Kofstad,Oxid. Met. 35, 107 (1991).

    Google Scholar 

  11. W. W. Smeltzer,Trans. Met. Soc. AIME 218, 674 (1960).

    Google Scholar 

  12. C. Wagner,Ber. Bunsenges. 70, 775 (1966).

    Google Scholar 

  13. L. S. Darken and R. W. Gurry,J. Am. Ceram. Soc. 67, 1398 (1945).

    Google Scholar 

  14. P. Vallet and P. Raccah,Mem. Sci. Rev. Met. 62, 1 (1965).

    Google Scholar 

  15. R. J. Ackermann and R. W. Sandford, Tech. Rept. ANL-7250 (September 1966), p. 46.

  16. B. Swaroop and J. B. Wagner, Jr.,Trans. AIME 239, 1215 (1967).

    Google Scholar 

  17. H. G. Sockel and H. Schmalzried,Ber. Bunsenges. Phys. Chem. 72, 745 (1968).

    Google Scholar 

  18. R. A. Giddings and R. S. Gordon,J. Am. Ceram. Soc. 56, 111 (1973).

    Google Scholar 

  19. H.-J. Grabke,Ber. Bunsenges. Phys. Chem. 69, 48 (1965).

    Google Scholar 

  20. B. Pieraggi,Oxid. Met. 27, 177 (1987).

    Google Scholar 

  21. P. Kofstad, inHigh Temperature Corrosion (Elsevier, New York, 1988).

    Google Scholar 

  22. E. T. Turkdogan, W. M. McKewan, and L. Zwell,J. Phys. Chem. 69, 327 (1965).

    Google Scholar 

  23. F. Nardou, P. Raynaud, and M. Billy,J. Chim. Phys. 76, 595 (1979).

    Google Scholar 

  24. R. L. Levin and J. B. Wagner, Jr.,Trans. Met. Soc. AIME 233, 159 (1965).

    Google Scholar 

  25. L. W. Laub and J. B. Wagner, Jr.,Oxid. Met. 7, 1 (1973).

    Google Scholar 

  26. F. Millot and J. Berthon,J. Phys. Chem. Solids 47, 1 (1986).

    Google Scholar 

  27. A. Sadowski, G. Petot-Ervas, C. Petot, and J. Janowski,Proc. of the Third Round Table Meeting on Physico-Chemical and Structural Properties and Kinetics of Reduction of Wüstite and Magnetite (Sept. 28–Oct. 3 1986, Jadwisin, Poland), inMetalurgia I Odlewnictwo, p. 259.

  28. E. Riecke and K. Bohnenkamp,Arch. Eisenhüttenw. 40, 717 (1969).

    Google Scholar 

  29. C. Carel and J. R. Gavarri,Mater. Res. Bull. 11, 745 (1976).

    Google Scholar 

  30. R. L. Levin and J. B. Wagner, Jr.,Trans. Met. Soc. AIME 236, 516 (1966).

    Google Scholar 

  31. E. R. Jette and F. Foote,J. Chem. Phys. 1, 29 (1933);AIME Trans. 105, 276 (1933).

    Google Scholar 

  32. B. Touzelin,Proc. of the Third Round Table Meeting on Physico-Chemical and Structural Properties and Kinetics of Reduction of Wüstite and Magnetite (Sept. 28–Oct. 3 1986), Jadwisin, Poland, inMetalurgia I Odlewnictwo, p. 107.

  33. F. Freund, G. Debras, and G. Demortier,J. Am. Ceram. Soc. 61, 429 (1978).

    Google Scholar 

  34. H. Wengler, R. Knobel, H. Katherin, G. Demortier, G. Wolff, and F. Freund,J. Phys. Chem. Solids 43, 59 (1982).

    Google Scholar 

  35. H. Katherin and F. Freund,J. Phys. Chem. Solids 44, 177 (1983).

    Google Scholar 

  36. H. Katherin, H. Gonska, and F. Freund,J. Appl. Phys. A30, 33 (1983).

    Google Scholar 

  37. F. Freund,Proc. of “Science of Ceramics 13” (Orléans, France, 1985), publ. inThe Journal de Physique 1986, P. Odier, F. Cabannes, and B. Cales, eds., p. 499.

  38. J. Nowotny,Mater. Sci. Forum 29, 99 (1988).

    Google Scholar 

  39. J. Nowotny, inSurfaces and Interfaces of Ceramic Materials (1989), p. 205.

  40. R. G. Egdell and W. C. Mackrodt, inSurfaces and Interfaces of Ceramic Materials (1989), p. 185.

  41. J. M. Blakely and S. M. Mukhopadhyay, inSurfaces and Interfaces of Ceramic Materials (1989), p. 285.

  42. R. G. Egdell and W. C. Mackrodt,J. Am. Ceram. Soc. 72, 1576 (1989).

    Google Scholar 

  43. I. Wolf and H.-J. Grabke,Solid State Commun. 54, 5 (1985).

    Google Scholar 

  44. R. S. Roth,Solid State Chem. 13, 159 (1980).

    Google Scholar 

  45. L. Himmel, R. F. Mehl, and C. E. Birchenall,Trans. AIME 197, 827 (1953).

    Google Scholar 

  46. P. Desmaescaux, J. P. Boquet, and P. Lacombe,Bull. Soc. Chim. Fr. 15, 1106 (1965).

    Google Scholar 

  47. P. Hembree and J. B. Wagner, Jr.,Trans. Met. Soc. AIME 245, 1547 (1969).

    Google Scholar 

  48. W. K. Chen and N. L. Peterson,J. Phys. Chem. Solids 36, 1097 (1975).

    Google Scholar 

  49. R. Bredesen and P. Kofstad,Proc. of The Third Round Table Meeting on Physico-Chemical and Structural Properties and Kinetics of Reduction of Wüstite and Magnetite (Sept. 28–Oct. 3 1986), Jadwisin, Poland, inMetalurgia I Odlewnictwo, p. 225.

  50. T. Norby, inSelected Topics in High Temperature Chemistry, (Ø. Johannesen and A. Andersen, eds. (Elsevier, Amsterdam, 1989), p. 101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bredesen, R., Kofstad, P. On the oxidation of iron in CO2 + CO mixtures. III: Coupled linear parabolic kinetics. Oxid Met 36, 25–56 (1991). https://doi.org/10.1007/BF00938455

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00938455

Key Words

Navigation